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SECTION 1.0
INTRODUCTION

Ground-based tracking of artificial satellites has provided an
observational data set which has been used to develop spherical harmonic
models of the global long wavelength gravity field of the earth.
Analyses of these data by the authors and many others have provided a
major advance in the field of Geodesy. Since the creation of the
National Geodetic Satellite Program in the middle 1960's, a continuous
effort has been underway at NASA/Goddard Space Flight Center (GSFC) and
other research centers notably the Smithsonian Astrophysica
Observatory, the U.S. Department of Defense, and a cooperative effort
between Germany's Deutsches Geodaetisches Forschungsinstitut and
France's Groupe de Recherches de Geodesie Spatiale -- to name a few) to
use satellite observations to improve our understanding of the gravity
field and enhance our capabilities for modeling near-earth satellite
orbital motion. Better knowledge of the geopotential has created
dramatic advances in point positioning, in the study of the earth's
kinematics and tectonics, in understanding the earth's rheology and
interior, and in the study of global oceanic processes with spaceborne

instrumentation.

The geopotential models developed by GSFC are known by their
acronym, GEM, standing for Goddard Earth Models. The GEM have generally
kept pace with the rapid advances made in the precision by which
near-earth satellites are tracked and the orbital accuracy requirements
of the missions themselves. However, new NASA missions foreseen for the
1990's require further gravity model improvement to achieve their
mission objectives. Of most immediate concern is geodetic support
(e.g., for orbit computations and the marine geoid) for the TOPEX
oceanographic satellite which is under development for launch in 1991.
The 10 to 15 em radial orbit accuracy requirement of TOPEX, driven by
the radar altimeter system, is at least a factor of three beyond the



capability of gravity models existing in 1985. There is an additional
need for an Interim model which enhances our present knowledge of the
earth's gravity field at intermediate and short wavelengths to the
accuracy needed to support a low orbiting Geopotential Research Mission
which is under consideration as a new flight project by NASA. Both of
these objectives can be satisfied with a substantial improvement in

global gravity modeling and the development of an Interim Model.

The recovery of a gravity model from satellite observations is
both costly and time consuming. It requires the arduous analysis of
large numbers of observations spanning diverse data types and the
building of large numerical systems of equations permitting a simul-
taneous solution of several thousand unknowns. Consequently, the

preparation of an improved model requires extensive pre-launch research.

To achieve the accuracy required for TOPEX, an experimental plan
has been devised which builds towards a final geopotential solution in
stages with harmonics extending to higher degree as the earth's gravity
field is more completely sampled. Therein, each type of data is to be
carefully scrutinized and separately evaluated to extract optimal subset
gravity solutions. The final model, and one that will satisfy the TOPEX
criterion, will be obtained from the combination of all of these
validated data. This model will utilize a large amount of available
laser, altimeter, satellite-to-satellite tracking and surface

gravimetric observations.

This report describes the first of these preliminary gravity
models, GEM-T1, which is exclusively based upon direct satellite
tracking observations. This spherical harmonic model, complete to
degree and order 36 is a direct result of the gravity field improvement
effort which has been undertaken by GSFC and the University of Texas'
Center for Space Research to produce an Interim Model. This "satellite-
only" model was developed by GSFC and is reported herein. In regard to
data selection, GEM-T1 although more complete in spherical harmonics, is



like earlier GSFC models, for example, GEM-9 (Lerch et al., 1979) and
GEM-L2 (Lerch et al., 1982) which also exclusively used satellite
tracking observations. Models which will include satellite-to-satellite
tracking, spaceborne radar altimeter observations and surface gravity
measurements are in the planning stages. These later fields will all be
built upon the long wavelength information contained within GEM-T1.

The demands of future orbital missions made the recovery of a
more accurate gravity model necessary and required their extension to
higher degree. The availability of the CYBER 205 "super-computer” at
GSFC played a major role in making this task both feasible within the
time constraints imposed upon us and practical from a resource
assessment. Adapting our orbit determination GEODYN Program and the
SOLVE least squares solution system to the Cyber vector processor was a
major step in laying the foundation for a complete and total re-
iteration of our previous gravity modeling activities, The last
recalculation of all least-squares normal matrices occured more than ten

years ago in preparation for GEM-7 (Wagner, et al., 1977).

In the computation of the GEM-T1 model a total re-iteration of
the data analysis and matrix generation activities was performed. This
permitted a consistency lacking in the earlier GEM models in terms of
adopted constants, data treatment, non-conservative force modeling and
in the definition of a reference frame. In particular, the aliasing
error has been reduced by consistently evaluating all orbital data in
the normal equations for a spherical harmonic representation to degree
and order 36. For many data sets, terms extending to degree 50 are
available although they have not been used to solve GEM-T1. In the
past, as the state of the science evolved, only the most recent data
sets benefitted from improved modeling. The inconsistencies associated
with an evolving science and the lag-time required for their
implementation in our data analysis have been avoided by design in the
creation of GEM-T1, A model with improved parentage has now been
produced which is based largely upon the standard set of constants



adopted for the MERIT Campaign (Melbourne, et al 1983) with some
significant improvements. Additionally, other NASA Geodynamics research
activities like the Crustal Dynamics Program, have provided improved
a priori tracking station coordinates and earth rotation series which
have been used in the development of GEM-T1. These models, values and
treatments are described in detail within this report. In subsequent
models planned for the next few years, a simultaneous solution including
tracking station adjustments with the gravity field will also be

explored.

Although the title of this report might indicate otherwise, there
is more than one gravitational model discussed Wwithin its pages. We
deliberately sacrificed brevity for the sake of completeness to permit a
more thorough discussion of the approach we have pursued to design,
compute, calibrate, and test the GEM-T1 solution. In so doing, we have
presented material pertaining to many additional fields which were in
some cases developed specifically for test purposes. Generally, these
models were used to illustrate specific points and show the response of
the model to new weights and/or new data contributions. As an aide in
keeping track of them all and to assist in an easy understanding of
their differences, these models are summarized in Table 1. Therein we
present a brief description of these fields, and a cross reference which

highlights specific tables, figures and sections where they are used.




TABLE 1. KEY TO GSFC GRAVITATIONAL FIELDS:

FIELD NAME

GEM-TI1

PGS-T2

DESCRIPTIVE SUMMARY AND
CROSS REFERENCE

DESCRIPTION

1s a “"satellite-only” gravitational
field model developed from
tracking dats acquiredon 17
unique satellite orbits (Table
S.4). A summary of the
observations utilized is presented

on Table 5.3 and the weighting
used is shown in Figure 8.4. The
spherical harmonic coefficients
for GEM-T1 are found in Table 9.1
and their uncertainties are shown
in Figure 10.1. This model is the
focus of this manuscript. GEM-T 1
had an internal GSFC field number
of PGS 3113. Note also, certain
data sets were corrected to
improve the overall model.

1S an earlier model presented st
the American Geophysical Union
Meeting in the spring of 1986.

It did not contain dats from 6 low
inclination satellite (Section 5.2.8
and 10.4) and contained a serious
GEOS-2 matrix back-substitution
problem (Figure 8.3),



PGS-TZ2'

GEM-9

GEM-LZ2’

PGS-1331°

PGS-S4°

GEM-10B’

is the PGS-T2 field (above) with
the GEQS-2 problem corrected.

is a pre-Lageos “satellite-only”
model (Lerch et al, 1877).

is the GEM-L2 model (Lerch et al,
1982) solved with the C,5 t2,1)
coefficients constrained to

equal zero. This was GSFC's

general recommended “satellite
only” model prior to the completion
of GEM-T 1.

is the PGS—1331 model (Marsh
et al, 1985), like Gem-L2;

solved with C,5(2,1) constrained
to equal zero. PGS-1331 was a
model “tailored” for the Starlette
satellite orbital computations.

is the PGS-S4 model (Lerch et al,
1982b ) solved with the C,S (2,1)

coefficients constrained to
equal zero. PGS-S4 was a model
"tailored” for SEASAT orbital
computations.

is the GEM-10B model ( Lerch et al,
1981) solved with the C,S (2,1)
coefficients constrained to equal
zero. GEM-10B is a comprehensive
mode} which contained altimetry
and surface gravimetry.




PGS-3013

PGS-3167

PGS-3163

PGS-3164

1s the PGS-T2 model where the
data weight was increased by a
factor of S with respect to

the collocation matrix (Table 8.2)
and was used to gove an example
of the adequacy of the calibration
method in Figure 10.12.

was made from the GEM-T 1
normal equations but solved to
be of a smaller size--being
complete to deqree and order
20 (like GEM-L2) and not 36,
which was the truncation limit
of GEM-T1 (Figure 8.7).

was a combination solution combining
GEM-T1 with SEASAT altimeter
matrices. The altimetry in this

field was given a weak weight

of 0.1 (Figure 8.5, Figure 10.3.1, and
Figure 10.10).

was the PGS-3163 field, solved
giving greater weight of 0.5
to the altimetry (Figure 10.11),
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SECTION 2.0
THE GEODYN AND SOLVE SYSTEMS

The Cyber 205 computing system was obtained by Goddard Space
Flight Center in 1982. An effort was immediately undertaken (and
continues today) to improve our principal analysis tools, GEODYN and
SOLVE, to efficiently use the Cyber's vector processing capabilities.
This section describes the design decisions, status, and most
importantly, the enormous benefits which accrued as a result of these

software development activities.

2.1 SOFTWARE DESCRIPTION

The primary software tools utilized by the GSFC TOPEX gravity
modeling team were the SOLVE program and the GEODYN system of programs.

GEODYN provides state-of-the-art orbit determination and geodetic
parameter estimation capabilities [Putney, 1977; Martin et al., 1980,
Martin et al., 1987]. Using a fixed-integration-step, high-order Cowell
integrator, GEODYN numerically integrates the spacecraft Cartesian state
and the force model partial derivatives. The forcing function includes
a spherical harmonic representation for Farth gravitation as well as
models for point mass lunar, solar and planetary gravitation, solar
radiation pressure, Earth atmospheric drag, and dynamical Earth and
ocean tides. Observation modeling includes Earth precession and
nutation, polar motion and Earth rotation, and tracking stations
displacements due to solid tides and ocean loading. Tracking measurement
corrections are provided for tropospheric and parallactic refraction,
annual and diurnal aberration, antenna axis displacement and spacecraft
center of gravity offset. Dynamic data editing is performed as the
Bayesian least squares estimator is iterated to solution convergence,

Estimable parameters include measurement and timing biases, and tracking

FIOATRD v
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station coordinates, as well as the orbit state and force model
parameters in all of the above mentioned models. The normal equations
formed within GEODYN may be output to a file for inclusion in 1large

parameter estimations and error analyses.

The SOLVE computer program selectively combines and edits the
least squares normal equations formed by the CEODYN Program to form
solutions for the gravity field, tracking station coordinates, polar
motion, earth rotation, ocean tides and other geodetic parameters. The
SOLVE Program provides a highly flexible tool for the computation of the

solutions.

This software has evolved over the last 20 years to include the
processing of many satellite tracking data types using sophisticated
geophysical models. In the past, the research has been heavily
constrained by the capabilities of the available computers. Typically,
computer runs to create and solve large normal matrices for the solution
of geodetic parameters required several CPU hours. As additional
geophysical models were added, the increase in the number of estimable

parameters was clearly limited by computer resources.

In 1982, the Cyber 205 vector computer was installed at GSFC. For
more than a year before the installation, both GEODYN I and SOLVE were
upgraded for the Cyber 205, The GEODYN program required some basic
redesign to optimally use the vector hardware. This entailed a complete
rewrite of the original scalar version of GEODYN, creating the GEODYN II
Program. The SOLVE program, which intrinsically dealt with large arrays,

was modified in sections to take advantage of the vector architecture.

From the beginning of this activity, considerable effort has been
devoted to improve computational efficiencies on the Cyber. For GEODYN
I1I, completely rewriting the software has taken several years. For
SOLVE, I/0 redesign has become necessary, since in a typical run, I/0

time is now twice that of CPU time.

10




2.1.1 Vectorization of SOLVE

The SOLVE [Estes and Major, 1986] program has been vectorized for
the Cyber 205. The solution section of the code is now fully vectorized
and optimally partitioned for CPU and I/0 performance. The CPU usage is
S0 small that the algorithm is now clearly I/0 bound. Minimizing the I/0
time has led to the utilization of special I/0 packages. Large
quantities of data are moved simultaneously from different disk packs

residing on separate 1/0 channels when possible.

Typically, many hundreds of matrices, each representing a single
orbital arc, are required for a solution. Techniques are employed to
limit the amount of data processed by SOLVE at any one time; these
include combining several matrices into a single "combined" matrix or
C-Matrix. SOLVE is capable of performing this function with the option
of eliminating satellite arc dependent parameters through back
substitution at the same time. There are two types of parameters that
are solved for. Some are satellite specific (e.g., the satellite's
initial state vector at some epoch time). These so-called "arc"
parameters are seldom the ones of major interest. The "common"
parameters include those of geodetic interest that are global in
nature. They can be gravity coefficients, earth orientation parameters,
tidal terms, etc., and it is the set of values of these parameters alone
which normally constitute a solution. The process of combining matrices
may be done when summing the normals of individual data sets to form C-
matrices or at a later stage, when combining C-Matrices to form a second
level of C-Matrices. This affords tremendous data compression and
creates a final matrix with the smallest possible number of parameters
through the back-substitution of all arc-parameters. When this matrix
is inverted by SOLVE, corrections to the total set of common parameters
are produced without the added expense of carrying along unnecessary arc

parameters.

11



The SOLVE program has the capability to perform a linear shift on
the right-hand side of the normal equations. This may be done during the
combining stage so that all parameters converged using different values
of the global parameters may be transformed to a common reference. The
solution also may be referenced to any set of starting values. Other
SOLVE capabilities include dynamical suppression of parameters based on
numerical stability, application of weights to individual matrices or
C-Matrices when combining, and carrying out a partitioned Cholesky
decomposition to optionally compute (a) the parameter solution, (b) the
parameter solution plus standard deviations or (¢) the parameter solu-

tion plus a full variance/covariance matrix, as the user requires.

An example of the reduction in computing time which has been
achieved is provided for the full inversion of a 1921 x 1921 matrix. On
the IBM 3081 this process took 116 minutes of CPU time and 31 minutes of
I1/0 time. On the Cyber 205 (with four million words of computer memory)
the process required only 90 seconds of CPU time and 142 seconds of I/0
time. This is a factor of 77 improvement in CPU and a factor of 13

improvement in I/0!

2.1.2 Evolution of GEODYN

The original GEODYN system (GEODYN 1I) was designed for IBM
mainframe computers. In this form, GEODYN I was optimized to take full
advantage of its enviromment. When NASA began the procurement process
for a vector computer, it became immediately apparent that a redesign of
the GEODYN system was necessany to make a cost-effective utilization of
the vector computing environment. Also of great importance was the
vastly increased speed achieveable for large parameter solutions if this
approach was undertaken. Additionally the GEODYN I software contained a

number of outdated approximations which needed to be eliminated in the

system redesign.

12




With these concepts in mind, a two-pronged approach was taken
which led to a new and highly efficient GEODYN operating within the
vector processing environment.

Because GEODYN's historical computing environment -~ the I1BM
360/95, was to be replaced, a scalar version of GEODYN I for the
Cyber 205 computer was created directly from the IBM version. This

program has been commonly referred to as Cyber GEODYN I.

In a parallel effort, a totally new GEODYN program was designed to
take full advantage of the vector-processing environment. This
new program is called GEODYN II and has been developed in such a
fashion that those functions which are I/0 intensive are performed
on the "front-end" to the vector computer and the CPU intensive
functions are performed either on the vector computer or on the

"front-end" computer at the specification of the user.

These two efforts have permitted a smooth transition of operations
from the IBM 360/95 to the Vector Processing Facility at GSFC. Because
the GEODYN II system required a development period of about 5 years, the
Cyber GEODYN I was used in the interim. A more thorough discussion of
the GEODYN II design philosophy and its impact on the TOPEX gravity

model effort are presented below.

2.1.2.1 GEODYN II Design Philosophy
There were a number of key considerations that went into the
design of the GEODYN II system. They are briefly presented below and

individually discussed in the following paragraphs.

o All data formats were made a uniform 64-bit floating point.

13



(o} 1/0 intensive operations were off-loaded from the vector

computer.

o] Observation processing was adapted to vectorization.

o Interpolation and partial derivative chaining were fully
vectorized.

o Force model evaluations and partial derivatives were

vectorized where appropriate.

0 Numerical integration of the orbit was vectorized where
possible.
o Numerical integration of force model partial derivatives was

fully vectorized.

0 Formulation of normal equations was fully vectorized.

o Large parameter solutions exhibit different vectorization
problems than routine orbit determination solutions. There-
fore capabilities were provided to allow optimization of

vectorization based upon the type of problem to be solved.

Figure 2-1 presents the data flow structure of the GEODYN II
system. It also indicates the operating enviromment of the various
programs in the system. No explicit references to this figure are made
in the following paragraphs, but an awareness of its contents may be

useful to the reader.
Transmissions of data between the Cyber 205 vector computer and

its "front-end", the Amdahl V7 computer, require data conversions if the

data are to be used by both computer systems. These data conversions are
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greatly facilitated and performed at a higher speed if the data are all
of one FORTRAN variable type. For these reasons, all observation data
and all output files from the Cyber 205 exclusively use 64-bit floating
point words. The Tracking Data Formatter (TDF) program has been designed
as the part of the GEODYN II system that converts all observation data

into a common 64-bit floating point format.

The Cyber 205 is well-suited to the performance of operations.
that take advantage of vector pipeline commands. For this reason the
basic input data processing, which is fundamentally serial, is performed
on the Amdahl V7 computer by the GEODYN II-S program. This involves
reading the various input files and selecting those subsets of data
required to perform the numerical computations. The GEODYN II-S program
also performs the bookkeeping functions of the system and transmits this
information along with the data subsets to the computationally intensive
component of the GEODYN II system.

The GEODYN II-E program is the computing engine of the GEODYN II
system. This program has been designed in such a fashion that it may be
used on both the M"IBM type" computer or on the Cyber 205 vector
processor. It is in this segment of the system where the CPU intensive
operations are performed. GEODYN II-E has been optimized for the vector
processing enviromment, and as a consequence, is most efficient when

utilizing the Cyber 205 computer.

Observation processing has been vectorized within the GEODYN II
system. This has been made possible by carrying this theme throughout
all of the above programs:

Beginning with the TDF, the observations are organized by measure-
ment type and tracking station into data blocks. Each data block
contains observations of only one data type from a single tracking

pass. The observations within each block are chronologically
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ordered and the blocks themselves are chronologically ordered with

respect to block start times.

The GEODYN II-S program retains an observation block structure in
the data that it selects and passes on to GEODYN II-E. However, at
this stage the data blocks may be subdivided to facilitate later

processing.

GEODYN II-E processes data blocks by treating each observation
identically within the same block. This allows the application of
vector operations to the data processing algorithms. It further
permits the vector interpolation of orbit and force model
dynamical partial derivatives obtained from the numerical
integration of the variational equations and the vector chaining

of partial derivatives,

The primary time consuming algorithms in the numerical integration
of satellite orbits and force model parameters are associated with
1) spherical harmonic evaluation of the Earth's gravitation field,
2) evaluation of variational derivatives, 3) numerical integration of
the equations of motion, 4) evaluation of force model partial deriva-
tives, 5) numerical integration of force model variational equations,
and 6) the evaluation of other force model perturbations. The relative
importance of each of these items depends on the specific circumstances
pertaining to each problem. In the typical orbit determination problem
items 1-3 will be expected to dominate computation times. When a tide
model including 300 pairs of coefficients is evaluated, item 6 will
become a very significant factor. Or, if a full gravity field normal

matrix is to be calculated, items 4-5 will have substantial impact.
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Because all of the above factors enter into the numerical

integration problem, a very high level of vectorization is required in

these areas. To deal in an efficient manner with these various problems
GEODYN II-E has been vectorized in the following fashion:

1)

2)

3)

4)

5)

6)

For

Spherical harmonic evaluation has been fully vectorized

including the Legendre polynomial recursions.

Spherical harmonic variational derivatives have been fully

vectorized.
Numerical integration of the -equations of motion |is
fundamentally sequential in nature, however some

vectorization has been performed in this area.

Force model partial derivatives for terrestrial gravity and

Earth and ocean tides have been fully vectorized.

Numerical integration of force model partial derivatives has

been fully vectorized.

Evaluation of Earth and ocean tidal perturbations has been

fully vectorized.

large problems, the greatest speed improvements may be

achieved through vectorization of the formation of the normal equations.

Computations in this area are linearly proportional to the number of

observations and proportional to the square of the number of adjusted

parameters. This segment of the code has been fully vectorized in GEODYN

II-E.
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Problem-oriented intelligent optimization has also been performed

within GEODYN II.

For simple orbit determination problems, the number of force model
parameters is generally substantially smaller than the number of
Observations within each data block. Under these circumstances the
matrix of partial derivatives is dimensioned such that partial
derivative interpolation, chaining and normal summation will be

vectorized based on the number of observations in the block.

For solutions with a large number of adjusted parameters, the
problem is sufficiently complex that the normal equations for each
data arc must be put in a file for later combination with the
normal equations of other data arcs. In this situation the matrix
of partial derivatives is dimensioned such that the partial
derivative interpolation, chaining and normal summation will be
vectorized ©based wupon the number of adjusted parameters.
Improvements achieved in this area result primarily from
linearization of the relationship between computation time and the

number of adjusted parameters.

Another problem addressed by GEODYN II occurs when the normal
equations become sufficiently large that the program and its
arrays no longer fit into computer memory. If left to its own
devices the computer's virtual memory paging system will
interminably thrash about consuming exorbitant amounts of computer
time. For this reason the GEODYN II system has been optimized to
partition the matrix summation problem. GEODYN II-E temporarily
stores the measurement partial derivatives on disk and forms the
normal matrix in the minimum number of segments necessary to allow
summation without paging.
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2.1.2.2 GEODYN II Benefits

The benefits of this extensive effort to reconstruct GEODYN for

the vector processing environment are several:

o] The switch to the normalized Legendre recursion formulation
in GEODYN II permits the numerically stable computation of
gravitational coefficient accelerations and partial

derivatives to degrees in excess of 360.

o The computation of the Right Ascension of Greenwich 1is
performed more precisely, eliminating annual discontinuities

on the order of 100 microns.

(e} Precession and nutation are included in the integration of
the adjusted force model parameters resulting in more

accurate force model partial derivatives.

0 Two-way range is strictly modeled as such, removing errors on
the order of one micron for satellites at altitudes of one
Earth radius. Errors of much greater magnitude are eliminated

for more distant satellites.

0 The JPL DE-200 ephemeris using the Wahr nutations and the

year 2000 precession model has been implemented.

o Spherical harmonic contributions to the variational equations
are fully computed automatically whenever normal matrices are
output.

o) Time dependent non-conservative forces are now modeled.

20




and last, but not least,

0o Typical orbit determination runs are 6.5 times faster on the
Cyber using GEODYN II than on the IBM 3081 using the original
GEODYN 1I.

o Gravity model normal matrix generations are at least 90 times

faster using GEODYN II on the Cyber than original GEODYN I on
the IBM 360/95. This factor of 90 is based upon duplication
within GEODYN II, of the original GEODYN I processing of non-
altimeter, satellite only, dynamical normals for inclusion in
the GEM-10B gravity model.

2.1.3 GEODYN II, SOLVE and the TOPEX Gravity Models

The TOPEX gravity modeling effort presented the first large scale
problem to be solved using the GEODYN II system and the Cyber optimized
SOLVE.

From the viewpoint of GEODYN II operations, three classes of
satellite data arcs were used in the TOPEX gravity modeling effort.
These classes were: optical data arcs, laser data arcs, and Doppler data
ares. The primary computational performance difference between the
optical and laser data arcs derives from the number of estimated
parameters included in the normal matrices generated. The Doppler data
arcs not only include the greatest number of parameters but also include

nearly an order of magnitude greater number of observations.

Figure 2-2 graphically illustrates the relationship between
GEODYN II running time on the Cyber, the number of adjusted parameters
and the number of observations in a data arc. The numbers shown are

typical for the analysis of both optical and 1laser data. Similar
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relationships exist for Doppler processing, with an approximately ten-
fold increase in running time associated with the ten-fold increase in

weighted observations.

Of particular note in Figure 2-2 is the strong linearity of all
profiles as the number of adjusted parameters is increased. This should
be compared with the quadratic increase in running time associated with
the generation of normal matrices on scalar computers such as the IBM
360/95 and the IBM 3081.

Using a conservative speed-increase factor of 90 for GEODYN II on
the Cyber versus the original GEODYN I on the IBM 360/95 (which is

comparable in speed to the IBM 3081), the following estimates merit
consideration.

o] Cyber 205 computer time required to generate 580 normal
matrices of 2000 parameters and 1380 observations should be
44 nours.

o IBM 360/95 computer time required to generate 580 normal
matrices of 2000 parameters and 1380 observations should be
3,960 hours.

Using a factor of 6.5 speed increase for GEODYN II on the Cyber
versus the original GEODYN I on the IBM 3081, estimates of the resources

to converge each of the data arcs used in the gravity model determina-
tion are as follows:

o) Cyber 205 computer time required to converge 580 satellite
data arcs, using 12 iterations each, should be 178 hours.

o IBM 3081 computer time required to converge 580 satellite
data arcs, using 12 iterations each, should be 1156 hours.
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Using that same factor of 6.5, the following are estimates of the
resources required to converge 720 data arcs used to evaluate the test

gravity model solutions.

o Cyber 205 computer time required to converge 720 satellite

data arcs, using 6 iterations each should be 110 hours.

0 IBM 3081 computer time required to converge 720 satellite

data arcs, using 6 iterations each should be 718 hours.

Translated into other terms, the projected resource requirements
for the convergence and formation of 580 normal matrices and the testing
of gravity model solutions would require the exclusive utilization of an

IBM 3081 computer by the project for the period of nine full months.

This same computational burden, when placed on the Cyber 205
computer using the GEODYN II system, constitutes less than five percent

of the annual resource allocation of the computer.

In fact the total computer resource budget for this TOPEX gravity
model effort was only 500 hours of Cyber 205 time spent over a period of
approximately one year. This figure also includes the computer resources
used by SOLVE to combine the 580 normal matrices, remove all arec
parameters through back-substitution, and produce some 120 test gravity
fields. Such a concentrated effort to produce these TOPEX gravity models
would not have been logistically possible using the original GEODYN I
and SOLVE even with a dedicated IBM 3081 computer.
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2.2 OPERATIONS

With thousands of arcs to be processed by a dozen individuals at
GSFC, the operation of the gravity field modelling effort was standard-
ized as much as possible.

This was achieved in several ways. Each satellite was given a
two character abbreviation and a three digit number so that required
data sets and matrix numbers could be related to the satellite
automatically. Generic setups were created to provide common control
language and common model constants for ease of operation and quality
control of input data streams. Naming conventions were defined for
satellite observation data sets. The summary page output of the GEODYN
program was modified to include more summary information. The normal
equations were numbered to provide satellite and arc information as well
as version number (see Figure 2-3). An on-line file was created to
provide a reservoir of information for sharing and documenting the

status of arcs completed and for combining arcs in the solution.

The actual task of arc processing and matrix generation was
divided into subtasks by satellite and data type. After the processing
for an arc had been completed, matrix numbers and mass storage cartridge

and backup tape location was stored in an on-line data file.

The job submission was done on the Amdahl V-7, which is the
front-end for the Cyber 205. It has an MVS operating system with the TSO
interactive capability. TSO command files, or CLISTs, were created for
the job submittal. Typically, the submittal of any of the job steps in
the GEODYN or SOLVE program required the typing of only one line of
controlling input containing the epoch date of the data arc, the
satellite identifier, and the type of processing to be performed. The

CLISTs, given this information, filled in the required data sets and
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submitted the runs. In addition, various types of output were collected
for further processing, documentation or continuation of the arc
processing. This process automation has proven invaluable throughout the

TOPEX gravity modeling project.

Data management for the normal equations was a nontrivial
problem. A 2400 parameter matrix requires 2.9 million 8-byte words.
Consequently, only 6 matrices fit onto a 6250-bits-per-inch magnetic
tape. The storage of 1000 matrices requires 166 tapes. Consequently 332
tapes were required to maintain the minimal two copies that prudence
demanded. The matrices to be used were stored on the mass storage
device attached to the Amdahl V-7 computer. Cartridges were used to
store the individual normal equations, and the combined normal
equations. Typically, six normal equations were output from the GEODYN
program onto a mass storage cartridge. These six were combined to form
a Level 1 C-Matrix. This combined matrix was stored on the mass storage
device as well. The arc parameters (state, drag, solar radiation,
biases etc.) were maintained through the Level 1 C-Matrix. When 6 C-
Matrices were completed they were combined into a Level 2 C-Matrix. At
this point the arc parameters were eliminated from the matrix. The aim
was to produce a single matrix from each satellite with a single data
type. This would allow weighting of matrices in the solutions by
satellite and data type. Some satellite data sets could also be
combined, since they would be handled alike. This was true of the
optical and some of the laser satellites. The record keeping and
numbering/naming conventions are vital in such a large data management
problem. It was important that the matrix number indicate the satellite
or number of satellites, combined matrix level, version number, and the
number of arcs or date of arc. Figure 2-3 shows how the different levels
of combined matrices were numbered to maintain control of the data
problem. In addition, combining matrices requires a fair amount of
computer time. Therefore, it was necessary that a normal matrix

compression occur at each successive level so that a sufficiently small
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number of matrices would be created to permit a good turnaround of

experimental solutions.

These operational concepts have paid off in providing a high
degree of quality control, offering flexibility to the analyst in
preparing arcs for inclusion in the gravity computation, and allowing
control of the overall model and in the use of constants. The GSFC TOPEX

gravity modeling project has benefitted immensely from this effort.
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SECTION 3.0
REFERENCE FRAME

3.1 INTRODUCTION

A uniform series for connecting the Conventional Inertial
Reference System (CIRS) realized by the orbital dynamics, with the
Conventional Terrestrial System (CTRS) realized by the global network
of tracking stations was a requirement for our new gravity solution.
This was one of the preliminary activities undertaken for the
development of the TOPEX field. A desirable technical constraint on the
origin of these series requires that it be as close as possible to the
average pole of the mid-70's to mid-80's interval. This required a
redefinition of the origin to coincide with the LAGEOS estimated 1979-84
six-year average pole. The major characteristics of the new series are
its wuniformity, its new origin, and its consistency with other
conventional models used in the transformation CIRS <=> CTRS, namely the

nutation model (Wahr's) and the precession model (Lieske's).

3.2 DESCRIPTION OF THE CONTRIBUTING DATA

The polar motion and UT1-UTC data available to us were as follows:

(1) the somewhat poorly documented but well maintained file of

polar motion values contained in GEODYN I,

(2) two series based on BIH data (Feissel, private communi-

cation),

(3) the series resulting from the LAGEOS SL6 solution.
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The source(s) for the first data set is not clear, especially for
the earliest years. The BIH series were obtained from the BIH Circular D
data set with additional corrections to reference them to the IAU 1980
nutation theory (Wahr,1979) and contained some weak Vondrak smoothing to
remove periodicities shorter than 35 days. The third and last set of
data, that obtained by GSFC from LAGEOS, was used as the basis for
unifying the series. This set was adopted for it is more consistent
with the rest of the mathematical model than any other. Details about
the periods covered by each data set are given in Table 3.1. The BIH

series are shown in Figure 3.1.

3.3 DISCREPANCIES BETWEEN DATA SETS

The discrepancies reconciled here were different for each of the
data sets, even though for the most part, they all amount to a different
origin of the local frame in which the pole coordinates are reported.
As a first step we compared each of the above with the SL6 series. The
origin of the BIH 1967-85 series could be easily and rigorously related
to that of SL6 since the two series overlapped for a considerable time
interval. The six year period (1979-84) was selected as the most
appropriate for determining the transformation parameters between the
two series for several reasons. First, this period is where the LAGEOS-
determined polar motion is the strongest due to the robustness of the
tracking data set. Second it covers most of the period over which very
accurate tracking data are available for analysis under this project. A
six year period was selected to properly average both the annual as well

as the Chandlerian cycles of the polar motion.
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Table 3.1

POLAR MOTION

AND EARTH ROTATION SERIES

® SELECTED DATA FOR POLAR MOTION

SOURCF

- OLD GEODYN FILE 58
- BIH CIRCULAR D (OLD SYSTEM) 62
- BIH CIRCULAR D (NEW SYSTEM) 67
- LAGEOS SOLUTION SL-6 79

® EARTH ROTATION SERIES

- OLD GEODYN FILE 58
- BIH CIRCULAR D 62

e MAJOR DISCREPANCY

PERIOD
09 18 - 61
01 05 - 66
01 04- 78
01 01 - 84
09 18- 61
01 05 - 84

THE REFERENCE FRAME DIFFERENCE BETWEEN THE

BIH CIRCULAR D SERIES AND THE LAGEOS SL-6 SERIES.
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3.4 MATHEMATICAL FORMULATION

The general theory on which we based our reference frame trans-
formations is detailed in the recommendations report made by COTES
(IAG/IAU Joint Working Group on the Establishment and Maintenance of a
Conventional Terrestrial Reference System) to the MERIT Steering
Committee (CSTG Bulletin, June 9, 1982), Since the LAGEOS-derived Earth
Rotation variations (UT1-UTC) do not provide a continuous uniform series
we limited our analysis to that of the polar motion series. We thereby
adopted the BIH-provided UT1-UTC series with no changes whatsoever. A
general picture of the geometry and notation utilized in this analysis
is shown in Figure 3.2. With the third rotation eliminated by virtue of
the fact that the two Earth Rotation series are identical, the mathe-

matical model relating the x discrepancies to the systematic

p’ ¥p
transformation parameters is as follows:

THE MERIT/COTES WORKING GROUP MODEL

by = a, cos & *+ a, sin 6 - By (3.1)

2

-a1 sin 0 + a2 cos 9§ - 82

Ax
where:

Qs Ay0 implied inertial frame misalignment
10 Bot implied terrestrial frame misalignment

8 : Greenwich Mean Sidereal Angle
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Application of this model to the selected 6-year BIH-SL6 polar
motion discrepancies resulted in the determination of the misalignment
angles listed in Table 3.2. These parameters were used to transform all
of the BIH polar motion series from 1962 to the end of 1978 into the SL6
p,yp listed in this table

were used to define the new origin of the local plane coordinate system

reference frame. The average values of the x

to which the coordinates of the pole refer. The reason for this is
apparent after a discussion of the dynamic polar motion. Since this
origin coincides with the Z-axis of our terrestrial system of reference,
we have, in effect, redefined that axis as well. To be consistent
therefore we must apply the appropriate rotations to the station
coordinates to make them compatible with this new Z-axis. The geometry
and the relationship of these coordinate systems at the pole are shown
in Figure 3.3. The redefinition of this origin was realized for this
neWw polar motion series through a simple subtraction of the above
average values. In the case of the station coordinates we must apply
these two rotations about the X-axis (yp) and Y-axis (xp). Since the
angles are small, the cosines are basically equal to one and the sines
can be approximated by the angles in radians. The transformation

equations then are:

Y. =Y,  +y_ 2Z (3.2)

where the subscript S stands for the SL6 coordinates and the T for the
new frame for TOPEX.
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TABLE 3 2

BIH (1979-84) TO LAGEOS (SL-6)
POLAR MOTION SERIES
TRANSFORMATION PARAMETERS

B,= 1.46 0.3 mas
Ba=-3.80 £0.3 mas
a,=-0.22 +0.3 mas

a,= 0.62 *0.3 mas

RMS (Ax) : 6.5 mas

RMS (Ay) : 6.2 mas

SIX YEAR AVERAGE

= 38.2+ 009

y =280.3+2.72
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3.5 DYNAMIC POLAR MOTION

The non-rigidity of our planet is clearly manifested in the
temporal variability of the Earth's moments of inertia in response to
both rotational and tidal deformations. The Earth's axis of figure,
which is the principal axis of angular momentum, exhibits two periodic
motions. There is daily motion with an amplitude that can reach 60
meters due to the Earth's response to the tidal deformation. The tides
are modeled elsewhere and therefore this motion is accounted for. The
much smaller motion, with a period similar to that of the Chandlerian
wobble, is the Earth's response to the rotational deformation. The

geometry of the motions involved is depicted in Figure 3.4,

Most of the theories developed so far [Gaposchkin, 19721,
[Lambeck,1971 and 19721, [McClure, 1973] concluded that this motion is
proportional to the main wobble. The proportionality factor when the
geopotential is referenced on the CTRS is about 1/3 and depends on the
Earth's elastic properties. Because our capability to determine c(2,1)
and S(2,1) is of higher accuracy than our knowledge of the Earth's
elasticity parameters, it is only prudent to parameterize this factor.
It is well known [Heiskanen and Moritz, 1967] that the orientation of
the axis of figure with respect to some arbitrary frame of reference is
reflected in the values of the second degree, order one, harmonics of
the spherical harmonic expansion of the gravitational field of the body
(Cc,S(2,1)). Based on the equations given in [ibid.] relating the
moments of inertia to the C(2,1) and S(2,1) harmonics (through C(2,0)),
we can derive a general formulation which accounts for the temporal
variations of the figure axis through the application of proportional
variations of the C,S(2,1) harmonics. Denoting this proportionality

factor by k (to be determined), the resulting model is:
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C, ,(t) = C2’1(t0) + C2,1(t-to) + kxp(t) CZ,O

(3.3)

S, 4(t) = Sy 48, + 5, 1(t=t)) = ky (£) C, g

where the harmonics with the carets refer to the value of these har-
monics relative to the CTRS at the initial epoch, tg,. It should be
clear that the periodic part, which is represented by the last term,
will average out in each Chandler cycle; any mean offsets in the polar
motion series cause there to be a need for nonzero first terms. The
center of the polar motion migrates slowly, and after some time,
accummulates as an offset. To the extent that this offset becomes much
larger than that of the periodic part, the second term is included to
compensate for this future secular motion. If we were to reference our
gravitational expansion to a CTRS whose third axis coincides with the
average wobble center at t,, then the first terms are identically equal
to zero. Over a short period of time (several years) the second term is
negligible; and as argued above, the third term will average out if we

analyze data over full Chandler cycles.

Our current .software does not completely model this effect.
Plans to implement it have been developed. Therefore with the current
SL6 coordinate system very close to that of BIH, the average pole for
the recent years (which contain the most accurate and more important
tracking data) would be about 10 meters off at an azimuth of about 270
degrees. The first term in the above model therefore would be nonzero
and very significant. By redefining the origin and the Z-axis of our
CTRS we have avoided these implications and at the same time, we can
still use the available software. Additionally, when the full model is
implemented we lose nothing since we can always apply it with the
initial harmonics at t, equal to zero.
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3.6  SUMMARY

The methodology used for creating a uniform series for the
coordinates of the pole over the period Sep. 18, 1958 through Dec. 30,
1984 based on series provided primarily by the BIH and the LAGEOS SL6
system has been presented. The resulting series realizes a modified SL6
CTRS, modified in the sense that its Z-axis and thus the origin of the

local plane system to which the pole coordinates refer, coincide

XY
with the axis through the center of the 1979-84 s?x-?ear wobble. This
deviation from the SL6 CTRS makes it possible to set C(2,1) and S(2,1)
identically equal to zero with no further modeling for the dynamic polar
motion and still claim a model accuracy which is only slightly inferior

to the ideal model described herein.
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SECTION 4.0
A PRIORI CONSTANTS ADOPTED IN THE GENERATION
OF THE TOPEX GRAVITY MODEL

The constants that were adopted and used in the development of the
a priori TOPEX gravity model delineate the physical parameters within
which the solution exists. These constants were chosen after consider-
able thought and debate. This brief chapter describes the adopted
parameters and updates a similar monograph found in Marsh and Tapley
(1985). The constants and procedures are listed by parameter type in
the following section on common parameters. By common parameters it is
meant parameters which are not satellite dependent (e.g. parameters

regarding the Earth).
4.1 COMMON PARAMETERS
4.1.1 Earth Tides

A total of eight tidal harmonics were used from Wahr's frequency
dependent model (Wahr, 1979), providing the a priori standard. All
other solid earth tides were modeled through a closed formula for their
combined 2nd degree tidal potential using k2=0.30 and a zero phase
lag. Partials were included for each of the specific

frequency-dependent solid earth tidal terms, as well k2, €, and k3, to

2
add some flexibility in our tidal analysis (see Section 7.1 for a

complete description of the earth tide modeling).

4,1.2 Ocean Tides

The a priori ocean tide model was developed by Christodoulidis,

et al. (1986b) in which 600 individual terms representing 32 major and
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minor tides were calculated from point admittances. For diurnal and
semi-diurnal constituents, the tidal expansion was carried out in
spherical harmonics to degree 6 for both the prograde and retrograde
parts of that expansion. For long period tides only prograde terms were
used. The a priori terms were predicted from admittances over each band
using the values and errors found in the Schwiderski (NSWC) oceano-
graphic models. Details on the algorithm can be found elsewhere
(Section 7.1) in this document. pPartials were computed for the 6
prograde terms giving long period orbital perturbations for each of 12

tidal frequencies.

4.1.3 Tidal Deformations

The Love and Shida numbers h2 and 22 had, as a priori values, the
values adopted for the MERIT Campaign standards, (Melbourne et al.,

1983); hy, = .609, &, = .0852. Partials were included for hj and %2.

2

4,1.4 Earth Parameters

The a priori value adopted for the product of the gravitational
constant and the Earth's mass, GM, was 398600.436 km3/s2. The speed of
light adopted was set at 299792.458 km/s. The semi-major axis of the
Earth was set at 6378137m. The Earth's flattening chosen as 1/298.257.
These values are consistent with the adopted laser tracking station

coordinates used as a priori values for the orbital recoveries.

4.1.5 Polar Motion and A1-UT1

In conjunction with a more consistent definition of the geometric
and gravimetric reference frames, a zero-mean set of polar motions has

been adopted. Partials have been calculated for average five-day polar
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motion and earth rotation values. Details regarding the a priori values
used for this zero-mean set of polar coordinates can be found elsewhere
in this document.

4.1.6 Station Coordinates

A priori station coordinate files were constructed based upon the
global laser station coordinate solution SL-6. The MERIT adopted refer-
ence longitude for the laser station at McDonald, TX, was implemented
and the coordinates were rotated to comply with the zero mean pole
definition mentioned before. Station parameter partials were computed
for further analysis and quality checks. Further details on this sub ject
are presented in Section 6.

4.1.7 Third Body Effects

Gravitational potential perturbations have been modeled for all of
the planets except Pluto.

4.1.8 Z-Axis Definition

The Z-reference for the gravity field is provided by the instan-

taneous spin axis of the Wahr model.

4.1.9 Coordinate System

The J2000 reference epoch and associated precession constants as
adopted by the IAU have been utilized throughout. The nutation model
used is that of Wahr.
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4,1.10 Relativity

Relativistic effects were not applied.

4,1.11 A Priori Gravity Modeling

An a_priori gravity model is neccessary in order to converge the
orbits and to construct the matrices required for a linear differential
correction to form a new gravity solution, Four gravity models were used
in this regard. The LAGEOS data were prepared by using the GEM-L2' model
of Lerch et al (1982). The prime denotes that the model (in spherical
harmonic form) was obtained through a new solution which contained all
of the original GEM-L2 data but now constrained the c(2,1) and S(2,1)
coefficients to zero. Justification for this constraint is discussed in
detail in Section 3. The STARLETTE data were prepared by using the PGS-
1331' model; a model that has been tailored for STARLETTE analysis
(Marsh et al, 1985). The SEASAT data were prepared by using the PGS-S4!
model; a model that has also been tailored for SEASAT analysis (Lerch et
al, 1982). All other satellites contributing in the solution were
prepared by using the GEM-10B' model (Lerch et al, 1981) which is GSFC's
preferred general gravity model. Note that all the models mentioned
here have been resolved constraining the C(2,1) and S(2,1) coefficients
to have zero values (as denoted by the primes). The adoption of several
gravity models means that differing a priori parameters were used with
different data sets. This approach was adopted after conducting the

following study.
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4.1.11.1 Selection of an A Priori Gravity Model: General Vs. Several
Tailored Fields

The question of which gravitational field should be chosen as the

a priori model was investigated. The central concern was whether

adopting one model or several specialized models, or even some new "ad
hoc" ones, would be better for the linearization of the observation
equations. This question was of concern because of the known properties
of general and "tailored" fields. Tailored models fit the data from one
specific satellite orbit very well. However, the individual
coefficients in these models can be at times, geophysically
unrealistic. The general models, on the other hand, have the best set
of coefficients overall, but they may poorly model a specific "lumped
harmonic" on an important satellite. The result is larger data

residuals and a less accurate orbit.

One approach implies the linearization of all equations with one
single set of starting values prior to a series of iterative linear
adjustments, which is correct for the Gauss-Newton method implemented in
our orbit and field estimation programs. However, a modification of this
approach could provide quicker convergence in the particular problem at
hand. This second approach was to use "tailor-made" fields, adjusted to
each of the main data sets (of which fields several are already avail-
able from previous projects) in order to ensure that the computed
orbits, along which the linearized equations and residuals are calcu-
lated, are as close to the true orbits as possible. This latter approach
seeks to minimize the non-linearities associated with mis-modeling the
orbit's evolution. This implies using different fields as a priori.
All of these various "starting points" are made approximately compatible
with the single field chosen for actual improvement, by way of linear
transformations (or "shifts") in the right-hand sides of the normal
equations. A question which required answering was whether non-linear
aspects of the problem could adversely affect these transformations.

Nevertheless, it is important to note that in preparation for the normal
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equation generation, the use of "tailored fields" improved upon our
ability to eliminate spurious data due to tighter editing than is

possible when using a single, more general model.

The main purpose here was to select a procedure that was likely
to converge to the correct solution (within the accuracy allowed by the
data). In order to clarify which of the two methods, the "unique
starting field" or the "multiple, tailored fields," was likely to
satisfy our needs best, a number of small-scale simulations of the
problem were carried out. The idea was to reproduce the main character-
istics of the adjustment for either approach in a reasonably inexpensive
way. A more complete description of the results of the simulations is
given in the next section. These simulations had the respective
properties of tailored and global models. In the a priori tailored
fields, some potential coefficients adjusted to provide accurate orbits
were clearly geophysically unrealistic. On the other hand, the general
a priori model did not fit the simulated data for a particular arc

nearly as well as the corresponding tailored model.

If the problem was sufficiently close to being perfectly linear,
either method should give virtually the same results, in which case the
choice becomes trivial from a theoretical point of view. (There are
practical operational differences even in this case.) This would happen
if the non-linear problem had such a well-behaved geometry in a
neighborhood of the actual solution, that in it, the hypersurface
defined by each normal equation could be regarded as flat in this
neighborhood, and all the different "starting fields" fell within this
region. As shown in the following section, this seems to have been the

situation in the cases simulated.
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4.,1.11.2 Simulations for Geopotential Solution Using Tailor-Made vs
General A Priori Models

A. Simulations Design

A set of 21 spherical harmonic coefficients were recovered using
simulated laser data on 3 satellites with 13th order resonance.. Data
from a simulated global set of laser stations were employed for the
normal equations using one 9-day arc on each satellite. The geopotential
model used to simulate the observations consisted of the 21 coefficients
to be recovered plus a base model complete through degree and order U
with values obtained from GEM-9. The general a priori model contained 21
perturbed GEM-9 coefficients. When it was used in the orbital recovery,
only the state parameters were solved for on each arc. The tailor-made
model had the same perturbed coefficients but each arc permitted certain
geopotential coefficients to adjust (i.e., tailor the field) for each
satellite individually. These coefficients were then "shifted" to the
common values of the general a_priori model before solving the normals.
The state parameters consisted of six orbital elements plus two drag
parameters (CD, éD) for each of the three satellite arcs. Two cases
involving different data quality were considered. One case had 5 cm
Gaussian random noise applied to the range observations and the other

case had perfect data, that is, with no noise applied.

B. Coefficient Terms Recovered

The 21 coefficient terms of the spherical harmonics that were

recovered in the solution consisted of:

Zonals Tesserals Resonant Tesserals
C(3,0) cs(2,2) €s(15,13)
C(4,0) Cs(10,4) CS(17,13)
c(7,0) €S(19,17) €s(19,13)
C(16,0) Cs(25,23) CsS(27,13)
c(17,0)
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Lumped Coefficients Solved by Satellite for Tailored Model

To "tailor" each individual satellite's model, lumped coefficient

terms were solved for on individual arcs. These were:

c(16,0), c(17,0), €sS(27,13)

Starting Values of Coefficients (A Priori)

Except for the base Uu4x4 terms, the a priori model (starting
values) was GEM-9 + 3¢ where the ¢ values represent the published
errors in the GEM-9 field. Since C,S(25,23) was not recovered in GEM-9
/4% for 3=25). The
coefficients C(16,0), C(17,0), and CS(27,13) were solved for on the

the ¢ value was computed from Kaula's rule (10

individual satellite arcs to obtain a priori values for the tailored
models, and the true values of these terms from GEM-9 were used as the a
priori for the general model. Notice, for example, in Table D the very
large adjustment made on C(23,13) to tailor a local gravity model to fit
the data on 5BN-2. The same is true for the C,S(23,13) adjustments for
ANNA. But note that, although these coefficient adjustments were large
when "tailoring" the satellite-specific fields, these tailored models
fit the simulated data many times better than the constant a priori
field. In the constant a priori field, no coefficient errors were
greater than 3o0. The "tailored" model for 5BN.2 had a coefficient error

for C(23,13) of nearly 50¢. (See Section D for comparisons.)

C. Satellite Orbital Characteristics

Primary Drag
Mean Resonant (CD=2)
Motion Period
Satellite a e I (rev/day) (days) m/day2
DI-D 7622 km .0848  39.5° 13.05 8.4 70
ANNA 7501 .0082 50.1° 13.37 4.8 4
5BN-2 7462 .0058  89.9° 13.46 2.4 10
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D. A Priori Satellite Arc Residuals and Lumped Coefficients

A Priori Residuals

No. of Tailor Model General Model
Satellite Observations rms rms

(5 cm noise)
DI-D 6937 110 cm 383 cm
ANNA 6124 133 730
5BN-2 3637 192 725
Adjusted Coefficient Units 10”2
Tailored Model Correct
Lumped Answer:
Coefficients DI-D ANNA 5BN-2 GEM-9
c(16,0) - 5.4 - 7.8 - 18.5 - 8.5
c(17,0) 19.2 14,5 - 7.8 16.2
c(23,13) -12.8 28.7 -202.2 - 7.7
S(23,13) -1809 7509 = 78.“ "10'7
E. Recovery of Geopotential

The normal

equations were solved using both the tailor-made

a priori model and the general a priori model. Errors in the solutions
of the 21 geopotential coefficients were plotted for comparison of the
two methods. An ideal TOPEX accuracy goal of 1/4 the errors in the GEM-9
model (i.e., 25% of GEM-9's uncertainties) was also plotted to show the
significance of the differences between the solutions of each method.
Both cases of simulation,
(Figure 4.3)

information has been plotted in Figure 4.1:

with noise on the data (Figure 4.2) and

without noise were plotted. The following additional
(a) the general a priori
starting values (GEM-9%3¢), (b) the standard deviations (error estimate)
of the recovered coefficients for the case where noise was applied to
the data, and (c) the Topex accuracy goal of 1/4 GEM-9 error g¢'s for
comparison. A log scale was used since over 6 orders of magnitude are

seen in the plots.
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F. Summary and Conclusions

In Figure 4.2 (with noise applied to the data) the errors are
approximately the same for the two methods except for the C(7,0)
value. Moreover, these differences are small and based upon the TOPEX
goal, there is not a significant difference between the two methods.
The main feature of these errors (Figure 4.3) is that the general model
(with smaller errors for most of the zonal terms but with larger errors
for most of the other terms) has a larger spread in the errors than the
tailored model which gives a much more consistent error. These errors
are much less significant when compared to the TOPEX goal than the
previous set of errors of Figure 4,2 where noise was applied to the
data.

The solutions were compared through post-solution fits to the
simulated range observations on DI-D using the "true" data (no noise).

The rms of the residuals gave the following results:

Model RMS
General .116 cm
"Tailored" .025 cm

The conclusion of this simulation is that the tailored model gives
slightly better results (especially in the perfect data case) but the
improvement seen is sufficiently small that, considering the goals of

TOPEX, or the present state-of-the~art, either method may be used.
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G. Interpretation of Results and Future Investigation

Even though the simulation shows that the difference in the
results between the two approaches is not clearly significant, it is
interesting to interpret the difference. First, it is clear that
non-linear effects in the system cause the different geopotential
results. An explanation for the improved results of the tailored
approach is that some non-linear effects in the residuals are removed
with the lumped (tailored) coefficients in the iteration used to
converge the orbit. These effects remain filtered-out when a linear
shift is made to adjust the tailored coefficients to the common values

of the general model.

The approach using the general model as well as that using the
tailored model may both benefit from the adjustment of additional orbit
parameters. This is evident in the present results, where the drag
parameters apparently are removing non-linear effects from the residuals.
in the process of converging the orbits. Both cases, tailored vs.
general a priori models, have obtained better geopotential results with
the application of drag parameters as compared to results where drag was

not applied.

The present simulation is quite simplified since most of the
gravity field was considered perfectly known in the recovery of the 21
coefficients and of those adjusting, U40% were 13th order resonant
terms. Yet, this work is important since in practice both methods have
been employed in the recovery of past geopotential models. We however
felt safe in concluding that there were no inherent ill-effects in using
ntajlored" models to reduce the data and shift the resulting normals to
a common base in the final solution. Since this approach had the
benefit of improving our data editing and orbit convergence activities,
it was adopted in the development of GEM-T1.
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On the other hand, it was not necessary to compute tailored
models for each satellite. We were able to adopt an approach of using
available tailored fields for certain satellite analyses, and a general

model elsewhere.

One should exercise caution before accepting our conclusions as
completely general. We have not attempted to assess the impact of using
a truly poor model as a priori. Furthermore, the effects of non-
linearity becomes more severe in the solution as the matrix conditioning
degrades. Hence this simulation would have been more conclusive if a
more complete set of coefficients were employed in the solution instead
of the simplified subset actually used. However, the present results
provided a basis for additional insight into the choice of an a priori
model, and revealed little significant problem with the approach we

ultimately adopted.
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SECTION 5.0
TRACKING DATA

The earliest satellite tracking systems were quite crude by
today's standards. Camera images and Minitrack interferometric tracking
yield satellite single-point positioning of from 10 to 100 meters.
Although the observations themselves were somewhat imprecise, a large
group of satellites having diverse orbital characteristics were tracked
by these systems. Therefore, these observations (especially those
obtained on twenty or so different orbits by a globally deployed
network of Baker-Nunn and MOTS cameras) have formed the basis for

earlier gravity modeling activities at GSFC and elsewhere.

In the early and mid-1970's electronic tracking of considerably
higher precision than that obtained by cameras became the routine method
for locating operational satellites. The main operational tracking
network for NASA became the Unified S-Band Electronic Network. These
electronic tracking systems acquired data in all weather conditions but
provided data of significantly lesser precision than that produced by

the early laser technologies of this era.

Laser systems are currently the most accurate and advanced means
of precision satellite tracking. These ranging systems have substan-
tially evolved and have undergone nearly a ten-fold improvement in
system precision every three years of the last decade. The evolution of
laser systems typify the progress which has been made in monitoring the
motion of near-earth satellites and has resulted in much more stringent
demands for geopotential models capable of utilizing data which now are
accurate to a few centimeters. The only limitation found with the lasers
is their dependence on weather and the somewhat restricted number of
satellites which carried corner cubes enabling them to be tracked by
ground laser systems. Historically, there are ten satellites which have

been tracked by NASA's laser systems.
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The parallel capability of S-Band and laser tracking provided
flexibility within NASA's operational environment. The laser network
provided NASA with the means of obtaining high quality data on geodetic
missions which required precision rather than mere operational orbital
accuracies. Satellite missions with less stringent orbit determination

requirements were supported by the S-Band Network.

The routine tracking obtained by the S-Band Network has been
utilized in past GSFC gravity solutions. The S-band stations
operationally tracked using a single frequency. Ionospheric refraction
effects are significant in S-band average range-rate observations.
These data have not been used within GEM-T1 pending the implementation
of either a reliable general ionospheric refraction model or some method

for deleting data significantly corrupted by this effect.

5.1 DATA SELECTION

There are perhaps sixty satellites which received sufficient
tracking to warrant their consideration for inclusion in the GSFC
gravity modeling activities. The TOPEX orbit determination requirements
are such that a four-fold improvement over existing field accuracies is
necessary. Such an improvement can only be accomplished with greatly
improved data handling and data validation directed at existing data
sets, particularly the older ones. Therefore some manageable framework
for selecting, qualifying and processing those data which were deemed
most important was developed as a preliminary step in the creation of
GEM-T1.

One of the first tasks was a selection of the most important data
sets upon which a "satellite-only" field could be computed. The sixty
objects which had geodetic quality data sets and orbits which were

reasonably free of large perturbations due to air drag were evaluated
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according to certain criteria: (a) the quality, quantity and global
distribution of their tracking data sets, (b) the uniqueness of orbital
perturbations on the satellite (d) the similiarity of the orbit to that
anticipated for TOPEX (e) the distribution of the data set over the
satellite's apsidal period and (f) the sensitivity of the satellite's

orbit to present weaknesses in existing gravity models.

The satellites which were considered are described in Table 5.1
which also shows their orbital characteristics. The satellite physical
dimensions, shape and weight are also given in Table 5.1. Based upon an
evaluation scheme detailed in (Marsh and Born, 1985) the ranking of the
satellite data sets can be found in Table 5.2. GEM-T1 has been computed
from seventeen of the top thirty ranked data sets. Almost all objects
rated in the top ten have been utilized. To achieve a better sampling
of inclinations, six satellites of low inclination were selected (see
Section 5.2.8). Future models containing additional orbits, altimetry,

surface gravity and satellite-tracking-satellite data are being planned.

In all, 17 satellites were included in the GEM-T1 solution. A data
summary for the GEM-T1 solution is presented in Table 5.3. Table 5.4
describes the orbital characteristics of the satellites used in the
formation of GEM-T1. The distribution of the selected satellite's
orbital characteristics are shown in Figure 5.1.,a. The temporal
distribution of the data used is summarized in Figure 5.1.b. As is
obvious from the summaries in Table 5.3, precise laser tracking played a
dominant role in defining the GEM-T1 gravity and tidal models. The
LAGEOS and STARLETTE laser satellites especially, played a central role
in both the tidal and gravity field recoveries. These satellites are
completely passive orbiting objects whose sole functions are to serve as
space-based laser targets. Both satellites are extremely dense spheres
(area to mass ratios of .00069 and .00096 m? kg_1 respectively) covered
by laser corner cubes and are in orbits designed to minimize non-

conservative forcing effects., LAGEQOS orbits at nearly an earth radius
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NAME

TELSTAR
GEOS-1
TIROS-9
SECOR-5
ovi-2

ECHO-1RB
BE-C
DI-D
DI-~C
ANNA-1B

GEOS-2
OSCAR-7
5B-2
COURIER-1B
GRS

TRANSIT-4A
BE-B

0G0~-2
INJUN-1
AGENA-RB

MIDAS-4
VANGUARD-2RB
VANGUARD-2
VANGUARD-3
ALOU-2

LANSAT-1
PEOLE

SAS
VANGUARD-1
EXPLORER-7

TIROS-1RB
AO4
RELAY=-1
TELSTAR-2
MIDAS-7

SECOR-1
LCs-1
NIMBUS~-2
EXPLORER-39
LANDSAT-2

LANDSAT=-3
LANDSAT-4
NIMBUS-6
NIMBUS-7
HEAO-1

HEAO-~3
SMM

SME
STARLETTE
LAGEOS

GEOS-3
SEASAT
EXPLORER-38

DATE

621115
651116
660115
651201
661028

600920
660405
670219
670224
640229

680310
660422
650426
670127
650623

610902
670316
660521
610916
640615

641110
660128
600505
600115
690721

720801
710202
710103
581204
671205

671106
661107
630101
630602
630803

640204
650605
660606
770407
750202

780403
810915
750705
781106
770901

791002
800303
810701
750527
790812

750531
780921
680801

TABLE 5.1

SATELLITE CHARACTERISTICS FOR

AREA

0.581
1.23
0.6
0.288
0.697

0.23

1.139
0.697
0.697
0.657

1.23
1.25
1.139
1.327
0.889

0.897
1.139
4.645
0.19
28.0

84.5
1.275
1.275
3.0
1.0

7.030
1.539
2.041
0.080
1.014

2.168
2.168
1.883
2.54
42.412

0.496
7.1
7.03
42,084
7.03

7.03
13.935

7.03

9.935
43.731

43.731

28.903

19.97
0.045
0.2827

1.4365
25,31
4.58

MASS

77.0
172.5
138.0

18.0

22.7

23.0
52.6
22.7
22.7
158.8

211.8
50.0
61.0

230.0
99.3

79.0
52.6
486.9
22.0
1000.0

1600.0
68.0
23.0
68.0

145.0

816.0
70.0
143.0
1.47
41.5

24.0
24.0
78.0
79.4
2000.0

18.0
34.0
414.0
9.3
953.0

960.0
1496.86
827.0
832.0

2720.0

2720.0
2315.0
437.0
47.25
411.0

345.909
2213.6
190.0

SHAPE

sphere

oct. Sphere
cylinder
sphere
cyl.hemis.

cylinder
octagon

cylinder
cylinder
spheroid

oct.pyramid
cylinder
octagon
sphere
cylinder

cylinder
octagon

box

sphere cyl.
cylinder

cylinder
cylinder
sphere
roc.-sph.rod
oblate sph.

conc

sphere
cylinder
sphere
double cone

cylinder
cylinder
oct.prism
spheroid
cylinder

rect.box
sphere
cone
sphere
cone

cone
cone
cone
cone
cylinder

cylinder
cylinder
cylinder
sphere
sphere

oct.pyramid

cylinder
tub.cross
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GEOPOTENTIAL IMPROVEMENT

1.986
0.659
- 2.165
- 0.792
4.839

2.976
5.158
5.372
5.913
2.970

1.621
2.934
- 2.862
8.230
3.501

- 0.694
~ 2.543
- 3.050
- 0.6927
- 1.276

- 0.980
5.273
5.256
4.859

- 1.906

- 2.728
13.121
14.914

4,421
3.417

4,143
- 3.012
1.213
1.217
- 1.001

- 1.271
3.623
2.348
2.170
2.729

2.730
3.099
2.429
2.666
12.835

6.222
10.570
- 3.435
3.296
- 0.214

- 0.349
- 1.722
0.152

PR HI

955.89
1107 .54
706.10
1140.15
414.80

1505.89
945.07
595.89
586.62

1076.81

1092.09
876.40
1096.16
963.38
415.54

902.89
889 .08
428.22
888.40
929.08

3490.52
572.15
573.94
513.84
507.65

924.20
520.93
522.09
652.11
562.75

691.50
614.92
1325.31
969 .98
3670.26

922.92
2710.42
1105.93

687.19

926.32

914.89
705.29
1098.47
959.37
433.68

494.37
568.83
531.27
812.19
5834.25

841.10
812.00
5855.43

AP RI

5649.96
2276.53
2572.67
2446.97
3467.11

1702.09
1321.12
1888.31
1359.39
1181.81

1600.23
1222.86
1133.10
1225.28
1309.79

1015.66
1087 .64
1512.96
1007 .86
934.80

3752.47
3285.55
3302.49
3754.57
2946.21

938.78
745.25
563.62
3947.09
1080.22

734,04
856.79
7436.43
10808.11
3730.72

952.11
2875.39
1181.12
2170.52

940.90

929.46
705.43
1108.94
969.63
447 .31

508.11
571.61
535.41
1114.80
5944.82

857.55
818.59
5865.21

ECC

0.2426
0.0725
0.1166
0.0801
0.1835

0.0123
0.0250
0.0848
0.0526
0.0070

0.0330
0.0233
0.0025
0.0175
0.0618

0.0077
0.0135
0.0739
0.0082
0.0004

0.0131
0.1634
0.1641
0.1904
0.1505

0.0010
0.0160
0.0030
0.1900
0.0360

0.0030
0.0170
0.2840
0.4010
0.0030

0.0020
0.0090
0.0050
0.0950
0.0010

0.0010
0.0001
0.0007
0.0007
0.0010

0.0010
0.0020
0.0003
0.0206
0.0045

0.0011
0.0005
0.0004

INCL

44 .80
59 .37
96.40
69.23
144.27

47.23
41.19
39.46
40.00
50.13

105.79
89.70
89.95
28.33
49.76

66.83
79.69
87.37
66.80
69.90

95.83
32.89
32.90
33.35
79.82

99.12
15.00

3.04
34.25
50.31

48.39
98.69
47.49
42.73
88.41

69 .89
32.11
100.35
80.66
99.09

99.14
98.20
99.96
99.29
22.76

43.61
28.51
97.55
49.83
109.84

114.98
108.01
120.64
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SATELLITE

LAGEQS
STARLETTE
GEOS-1
GEOS-2
GEOS-3
BE-C
SEASAT
D1-C

D1-D
PEOLE

DATA UTILIZED IN PRELIMINARY

Table 5.3

TOPEX GRAVITY MODEL: 1986

DATA TYPE

LASER

SUB-TOTAL - LASER

SEASAT
OSCAR-14

DOP‘PLER

SUB-TOTAL - DOPPLER

GEOS-1

GEOS-2

ANNA
TELSTAR

BE-C

BE-B
COURIER 1B
VANGUARD-2RB
VANGUARD-2
D1-C

D1-D

PEOLE

CAMERA

SUB-TOTAL - CAMERA

TOTAL

NUMBER OF

NORMAL MATRICES

58
46
48
28
36
39
14

4

6

6

285

15
13

28

580 *

*PEOLE arcs contained both optical and laser data.
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NUMBER CF

OBSERVATIONS

144527
57356
21287
26613
42407
64240
14923

7455
11487
4113

444.408

138042
63098

201,140

60750
61403
4463
3962
7501
1739
2476
686
1299
2712
6111
38

153.140

798,688




SATELLITE
NAME
ANNA-1B
BE-B
BE-C
COURIER-1B
Di1-C
Di-D
GEOS-1
GEOS-2
GEOS-3
LAGEGS
OSCAR
PEOLE
SEASAT
STARLETTE
TELESTAR-1
VANGUARD-2RB
VANGUARD-2

* D = Doppler
L = Laser
0 =z Optical

SATELLITE ORBITAL CHARACTERISTICS

SATELLITE

ID NO.

620601
640841
650321
600131
670111
670141
650891
680021
750271
760391
670921
701091
780641
750101
620291
590012
590011

TABLE 5.4

SEMI-MA JOR
AXIS

7501.
7354
7507.
7469.
7341.
7622.
8075.
7711,
7226.
12273.
7440.
7006.
7170.
7331.
9669.
8496.
8298.

65

ECC

0082
0135

0257
0161
0532
0848
0719
0330
0008
0038
0029
0164
0021
0204
2429
1832
1641

INCL.
(DEG.)

50.12
79.69
41.19

2831
3997
3946
59.39
105.79
11498
10985
89.27
15.01
108.02
49.80
44.79
3292
32.89

DATA*
TYPE

! rerrere -
ococorrovtrroooooooo

=
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Figure 5.la. Orbital Characteristics of the GEM-TI Satellites.
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above the earth, and senses only the longest wavelength gravity and
tidal effects. STARLETTE, orbiting at a much lower altitude of about
1000 km, experiences a rich spectrum of tidal and gravity perturbations
and is highly complementary to LAGEOS for the separation of long and
short wavelength gravity and tidal terms. Both of these satellites are
tracked on a high priority basis by a global network of laser tracking
stations and have extensive observation sets which have been supported
by NASA's Crustal Dynamics Project activities, Project MERIT, and the
WEGENER Campaign.

The following sub-sections as reported by the individual analysis
managers, describe the data analysis activities which were undertaken

for the high-priority satellites utilized in forming GEM-T1.

5.2.1 Analysis of SEASAT Doppler and Laser Data

SEASAT was launched on June 28, 1978. The SEASAT satellite is of
major significance because it has four distinct data types; S-Band,

laser, Doppler and altimetry.

The nominal orbit parameters used in processing the SEASAT

Doppler and laser arcs are listed in Table 5.2.1a.

Orbit computations using the PGS-Si' gravity model in the GSFC
GEODYN-2 computer program have been performed on 14 arcs of both Doppler
and laser data covering the span from July 27, 1978 to October 11, 1978.
These arcs were of 6-day duration with the exception of those arcs
between August 8 and September 17, which were shortened or lengthened
due to maneuvers during this period (Table 5.2.1b). In the computation
of the orbital solution for each Doppler arc, the six orbital elements,
daily atmospheric drag coefficients (CD), and a single solar radiation
pressure coefficient (CR) were determined. Pass-by~pass measurement

biases were also determined for each station in the solution.
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The Doppler data in the SEASAT orbital solutions were pre-edited
by passing the residuals from the initial orbits through a residual edit
analysis program. This program produced delete cards for passes of data
that exceeded the maximum RMS value of 1.5 cm/sec, fell below an
elevation cutoff of 5° and/or has a maximum timing bias of 5 ms. Passes
with less than 5 data points were also edited. The program also

produced the initial measurement bias values for input into GEODYN-2.

The laser orbits were computed by constraining the converged
Doppler orbits and passing them through the laser data. Solar radiation
pressure and the daily atmospheric drag parameters were also constrained
at their Doppler determined values. This was done to permit proper
combination of laser and Doppler orbital ares with flexibiiity remaining
for defining the relative weight of Doppler vs. laser observations. The
nominal weighting sigma used on the Doppler data was 1 em/sec for all
stations. A sigma of 1 meter was used for all of the laser stations
except 7833 (KOOTWIJK), which had a sigma of 2 meters applied. For the
laser orbits, Kootwijk was sampled at every 2nd observation and the GSFC
lasers were sampled at every 3rd observation. Stations 7804 (SAFLAS),
7842 (GRASSE) and 7834 (WETTZEL) were deleted from the solutions.

An estimate of the "true" noise was 0.6 cm/sec for the Doppler
data and 10 cm for the laser data. The overall RMS of fit obtained for
the Doppler orbits was about 0.75 cm/sec and 1.23 meters for the laser
orbits (Table 5.2.1c and 5.2.1d) based on the a priori PGS-SY gravity
model.

5.2.2 Analysis of OSCAR Doppler Data

The OSCAR-14 satellite, launched in 1967, is one of the U.S. Navy
navigation satellites. Data for this satellite were obtained as part of
the MEDOC Campaign, an international Doppler data program. The data is
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Table S.2.1a

NOMINAL ORBIT PARAMETERS FOR SEASAT

AREA: 25.31 m?
MASS: 2213.6 kg
ECCENTRICITY: 0.001
INCLINATION: 108°
PERIGEE HEIGHT: 7171 km
APOGEE HEIGHT: 7183 km

PERIOD: 100 minutes
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Table 5.2.1b

SEASAT PRECISION ORBITS

START STOP
ARC NO. YYMMDD HHMM YYMMDD HHMM
1 780727 0000 780802 0000
2 780802 0000 780808 0000
3 780808 0000 780815 0?30
4 780815 0743 780818 0748
5 780818 0?49 780823 0921
6 780823 0922 780826 0927
? 780826 0928 780901 0000
8 780901 0000 780905 0000
9 780905 0000 780910 0105
10 780910 0123 780917 0000
11 780917 0000 780923 0000
12 780923 0000 780929 0000
13 780929 0000 781005 0000
14 781005 0000 781011 0000
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LAUNCHED: JUNE 28, 1978 FAILED: OCTOBER 10, 1978

HEIGHT: 800 km ALTITUDE INCLINATION: 1080

T o sucHt A
249
SEACON _

ANTENNA

SCATTEROMETER

. Q ANTENNAS
s /
| P "‘l‘ SYNTHETIC APERTURE

RADAR ANTENNA

s —5'.

mnac
ANTENNA No, 1

MULTI-CHANNEL
MICROWAVE RADIOME TER

VIRR RADIOMETER LASER RE TROREFLECTOR
SAR DATA ALTIMETER
LINK ANTENNA

Figure 5.2.1. SEASAT
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Table 5.2.1¢c

EMAT SUNHARY FOR SEASAT DOPPLER

ARGUMENT

NUMBER OF WEIGHTED NUMBER OF OF PERIGEE

EPOCH OBSERYATIONS RMS (cm/sec) _STATIONS (AT EPOCH)
780721 7100 1.7822 35 180.573
7807227 14860 .7318 35 193.017
780802 13511 L2135 35 153.474
780808 15203 .7662 34 116.081
780815 6041 .6708 34 146.012
780818 6723 2109 34 141.374
780823 5369 .6704 33 124.192
780826 10808 .7030 33 51.376
780901 7369 .7058 34 99.272
780905 8453 8914 34 292.590
780910 10404 .7498 34 115.672
780917 9592 7399 33 93.448
780923 8934 .7483 33 122.805
781005 6982 .76356 32 56.247
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Table 5.2.1d

EMAT SUMMARY FOR SEASAT LASER

ARGUMENT

NUMBER OF WEIGHTED NUMBER OF OF PERIGEE

EPOCH OBSERVYATIONS RMS (m) STATIONS (AT EPOCH)
78070227 676 1.4265 8 193.018
780802 986 1.3541 8 153.474
780808 1522 1.1539 8 116.082
780815 424 1.3371 4 146.013
780818 483 .9859 3 141.3?5
780823 355 .6760 4 124.193
780826 1129 .8644 S 51.3?2
780901 627 1.0067 4 99.273
780905 664 2.0218 9 292.591
780910 1289 1.7256 10 115.672
780917 1725 1.2234 10 93.449
780923 1785 1.3231 9 122.806
780929 1915 1.7240 9 281.185
781005 1343 1.8012 9 56.248
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T T T

of particular importance because the satellite is in a polar orbit
giving complete global sampling of the gravity field. This is the first
time a strong polar orbit has been incorporated into the determination
of GSFC gravity fields.

The nominal orbit parameters used in processing OSCAR-14 data

were as follows:

Area: 25 m?

Mass: 1000 kg
Eccentricity: .004
Inclination: 89°
Perigee Height: 1040 km
Apogee Height: 1085 km
Period: 106 minutes

Orbit computations for OSCAR-14 utilized the GEM-10B' gravity
model. Thirteen T7T-day arcs were analyzed using the GSFC GEODYN-2
computer program. The data coverage was from August 1, 1980 through
October 24, 1980 (Table 5.2.2a). Computation of orbital solutions for
these arcs included the adjustment of the six orbital elements, daily
atmospheric drag parameters (CD), a single solar radiation pressure
coefficient (CR)' and observation biases for each pass. Timing biases
were computed for SHANGHAI (743) and PURPLE MT. (7185). Data from GRAZ
(425) were deleted from the solution. The sigma on all the data was

nominally 1 cm/sec.

An estimate of the "true" noise for the Doppler data was ~1.2
cm/sec, largely due to the large variety of receivers which tracked.
The overall RMS obtained for the OSCAR-14 orbits was about 1.59 cm/sec
(Table 5.2.2b).
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Table 5.2.2a

OSCAR-14 PRECISION ORBITS

START STOP
ARC NO. YYMMDD YYMMDD
1 800801 800808
2 800808 800815
3 800815 800822
4 800822 800829
5 800829 800905
6 800905 800912
! 800912 800919
8 800919 800926
9 800926 801003
10 801003 801010
1 801010 801017
12 801017 801024
13 801024 801031
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Table 5.2.2b

EMAT SUHFARY FOR OSCAR 14

ARGUMENT

NUMBER OF WEIGHTED NUMBER OF  OF PERIGEE

EPOCH OBSERVYATIONS RMS (m) STATIONS (AT EPOCH)
800801 5867 1.46?7 16 357.420
800808 5559 1.3992 16 332.814
800815 6227 1.4702 1?7 336.019
800822 5635 1.5358 1? 2?7.827?
800829 5812 1.5332 18 223.059
800905 5944 1.5991 1? 240.6M
800912 5993 1.6518 17 209.115
800919 6015 1.6174 16 187.183
800926 4519 1.5?73 18 187.551
801003 5500 1.5881 1? 136.816
801010 2251 1.8217 13 140.581
80101? 1881 1.6457 10 119.26?
801024 1895 1.2754 9 97.921
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5.2.3 Analysis of GEOS-1 Laser Ranging Data

GEOS-1 laser data from the period January 20, 1977 to December 14,
1978 have been chosen for analysis. This period spans more than one
cycle of the argument of perigee, thus providing good temporal coverage.
The data involves both SAO and NASA stations.

The first step in the procedure was to catalog the data and
divide it into 5-day arcs, eliminating those time periods with little or
no coverage. Attention was given to the number of passes and the number
of stations involved in any 5-day period. A total of 104 arcs survived
this scrutiny. Tables 5.2.3a and 5.2.3b provide summaries of the

satellite's orbit and the tracking data.

The NASA data was provided at a frequency of one measurement/sec,
with one measurement/7.5 sec for the SAO data. It was decided to select
every third NASA observation and every SAO observation to get a more
even balance in the data weighting. Using estimates of the position and
velocity vectors of the satellite, nominal values for air drag, solar
radiation pressure and solid earth tidal parameters, an ocean tide
model, and the GEM-10B” gravity field, the arcs were converged. In the
convergence process, the position and velocity vectors, air drag and
solar radiation pressure parameters were adjusted for each arc. The
purpose of the convergence is twofold: (1) to obtain more accurate
position and velocity vectors preparatory to the creation of the matrix
of normal equations ("E"-matrix) to be used in the gravity field
solution, and (2) to identify and delete nonreliable measurements and/or
passes. One air drag coefficient (CD) for each day of a 5-day arc and
one solar radiation pressure (CR) coefficient for the whole arc were

solved for. A total of 101 arcs survived this procedure.
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Table 5.2.3a

ORBITAL DATA FOR GEOS-1

Semi-major axis: 8080 km
Eccentricity: .07
Inclination: 5924
Perigee Height: 1135 km
Apogee Height: 2270 km
Year of Launch: 1965

Area: 1.23 m?2
Mass: 172.5 kg
Period: 120 minutes
Period of Arg. of Perigee: 540 days
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Table 5.2.3b

TRACKING DATA SUMMARY

® SATELLITE: GEOS-1

e TIME PERIOD: 1/20/77 - 12/14/78
e DATA: SAO + NASA LASER

® ARC LENGTH: S DAYS

@ NO. ARCS (INCL. NASA): 101 (58)

e NO. OBSERVATIONS: 129,371




Table 5.2.3¢c

SUMMARY OF GEOS-1 ORBITS

ARC EPOCH
YYMMDD NO. OBS. RMS (m)

770120 838 0.886

126 904 0.721

207 724 0.821

213 752 0.848

311 616 0.850

321 1169 0.744

329 978 0.463

403 1303 0.816

408 1359 0.658

413 1589 1.088

418 1061 0.890

423 1649 0.794

* 428 2084 0.801

* 503 1778 0.717

508 1525 0.771

* 524 1085 0.933

* 603 1520 0.782

* 608 1830 0.949

613 1331 1.345

* 618 1245 0.714

* 623 1637 1.073

* 628 1240 0.788

703 1235 1.025

708 1255 1.141

* 713 1238 0.836

718 1095 1.077

* 723 704 0.655

729 1512 0.959

803 1728 1.326

808 1513 1.063

818 1151 0.828

* 825 1614 1.081

* 830 1364 1.153

* 904 1739 1.189

916 1661 1.458

921 2343 1.106

928 1804 1.452

* 1003 908 0.652

* 1008 1207 1.707

* 1013 1647 1.507

* 1024 1706 1.424

* 1029 1598 1.340

*Includes NASA data
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Table 5.2.3c cont.

ARC EPOCH
YYMMDD

771103
1110
1116
1126
1201
1211
1216

780123

201
209
217
222
308
314
322
330
404
413
419
424
429
504
509

* 514

* 520

528

602

607

613

625

630

705

710

715

720

725

730

804

809

820

825

830

906

919

* %

* % % % %% %%

% % % % % % % %

* % % % %%

*Includes NASA data
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NO. OBS.

1195
1295
1359
961
1089
1114
801
1196
1075
1039
1280
1644
864
985
827
885
942
894
940
1465
960
1313
1810
1049
1065
1092
1443
1700
1533
1478
1329
1670
1440
1212
938
632
1329
1318
742
683
771
961
789
1770

RMS (m)

1.815
0.742
1.137
0.859
0.649
0.915
0.876
0.804
0.880
0.798
0.868
0.783
0.806
0.754
0.767
0.821
0.804
0.761
0.681
0.937
1.010
0.815
0.932
0.838
0.789
0.871
0.860
0.982
0.841
0.949
0.805
1.199
0.928
0.697
0.997
0.773
0.925
1.112
0.933
0.852
0.793
0.488
0.529
0.718




Table 5.2.3c cont.

ARC EPOCH
YYMMDD

780924
929
1004
1009
1014
1019
1024
1029
1105
1110
1115
1120
1125
1204
1209

LR BE B B IR BE B S WS

* % % %

Average rms = 0,912 m
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NO. 0BS.

1315
1468
1620
1975
1890
1189
2034
1278
1169
1227
1380
1571

865
1362

-

912

RMS (m)

0.793
0.908
1.044
0.579
0.969
0.807
0.701
0.826
0.967
0.709
0.753
0.973
0.658

1 . Na
doViT

0.843

*Includes NASA data



Finally, one E-matrix (matrix of normal equations) was prepared
for each arc. RMS of fit values for the arcs provide an indication of

the overall fit to the data. They are presented in Table 5.2.3c

The RMS values ranged from 0.4 m to 1.8 m, with an average of
0.91 m. This is quite good, considering the vintage of the data. The
GEOS-1 laser data provided an important contribution to the determina-
tion of the Earth's gravity field.

5.2.4 GE0OS-3 Analysis of Laser Ranging Data

The Geodynamics Earth and Ocean Satellite, GEOS-3, was launched on
April 9, 1975. The satellite characteristics and the nominal orbital

parameters are the following:

Area: 1.4365 m®
Mass: 345.909 kg
Eccentricity: 0.00114
Inclination: 115°
Perigee Height: 840 km
Apogee Height: 860 km
Orbital Period: 102 minutes
Argument of Perigee Period: 1039 days

The available data were obtained by both NASA and SAO laser
tracking stations during the years 1975 and 1976. It is distributed as

follows:
1975: 196916 meas.
1976 ¢ 193405 meas.
Total: 389421 meas. (SAO: 18%)
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Past experience at GSFC indicates that a 5 to 7 day arc length is
optimum for the analysis of data acquired on geodetic satellites at 800
to 1000 km orbit heights. This time span provides strong gravitational
information without excessive contamination from nonconservative force
effects such as atmospheric drag and solar radiation pressure. A 5-day
arc for GEOS-3 covers approximately the period of the effect produced by
the resonant 14th order coefficients of the Earth's gravitational
field. This effect can reach magnitudes of 150 meters in the along-
track component. The gravitational field used in the computations was
the GEM-10B” model complete to degree and order 36, derived from
satellite tracking data, surface gravity and altimetry. The atmospheric

density was that of the Jacchia 1971 model.

Forty-eight ares covering the time period from May, 1975 to
December, 1976, have been analyzed using the GEODYN Program. The
editing applied to the data consisted of several stages. There was a
preliminary selection based on existing knowledge concerning the quality
of the data obtained by different stations at different times. The
internal consistency of the data was checked on a pass by pass basis.

Finally, the dynamic editing inherent in GEODYN was applied also,

The atmospheric drag model formulation allowed the estimation of
a daily drag coefficient (CD), and the force model for the solar
radiation pressure incorporated a single coefficient CR for every 5-day
arc. The solid earth tidal effects were modeled after Wahr's formula-
tion, the ocean tides force model used a spherical harmonics approach
due to D. Christodoulidis, et al. (1986b): the 1long wavelength
components of approximately 600 constituents were wused in the
calculations and the coefficients of about 60 are actually estimated

when computing a solution.

The trajectory generated using these estimated parameters was

used to compute an RMS value for each 5-day arc, which provided an
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Table 5.2.4a

GEOS-3 ORBIT DETERMINATION RESULTS

ARC EPOCH NO. OF MEAS. RMS (METERS)
750519 356 0.510
750524 435 0.273
750614 910 0.559
750619 662 0.679
750629 926 0.633
750709 1120 0.757
750724 796 0.469
750729 876 0.363
750828 1705 0.596
750902 1240 0.459
750907 1501 0.527
750929 336 0.571
751118 $37 0.613
751123 488 0.593
751216 1333 0.485
760108 903 1.542
760113 1633 1.454
760205 1219 1.202
760210 2078 1,237
760217 1450 0.809
760222 1184 0.869
760227 1801 1.300
760404 1009 1.487
760409 1217 1.282
760417 1178 1.186
760422 1112 1,380
760427 2307 1.443
760502 1866 1.391
760507 1193 1.079
760523 1010 1.218
760601 1003 1.231
760606 974 1.374
760614 900 1.465
760621 804 1.319
760913 848 1.480
761004 1641 1.309
761009 1085 1.432
761018 878 0.904
761023 1031 1.145
761028 1072 1.641
761102 810 1.547
761107 1634 1.126
761112 984 0.965
761117 1394 1.369
761122 1527 1.386
761127 955 1.294
761202 610 1.383
761207 839 1.306
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ft.

Figure 5.2.4a. GEOS-3 Spacecra
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indication of the overall fit to the data for each arc. The results are
given in Table 5.2.4a below. The converged arcs were used to compute
the normal equations.

The higher RMS values in the 1976 arcs are due to the presence of
data from the SAO stations, which are less accurate than the NASA
stations. The SAO stations provide a global coverage which would be
lacking with the use of NASA data alone.

5.2.5 Analysis of STARLETTE Laser Ranging Data

This section documents the various stages of the data reduction
effort in connection with the STARLETTE laser ranging data set. The data
which fulfilled the editing criteria were subsequently used to form the
normal equations contributing to the estimation of the TOPEX model
parameters.

STARLETTE is a geodetic satellite launched by the French Space
Agency in 1975. Information on its size, shape, mass and orbital
characteristies is given in Table 5.2.5a. The STARLETTE data used in
this effort consist of a set of raw ranges sampled in such a way that
each station has about one range per six seconds (whenever available).
Based on previous experience we decided that this procedure produced
results similar to those obtained using normal points. The laborious
process of forming normal points was thus avoided. We have only
completed the analysis of the data covering the first eight months of
1984, with much more data being available.

These data that have been selected for analysis cover the January
1984 through August 1984 period. Table 5.2.5b shows the amount of
tracking available for analysis from each station. The breakdown in

terms of passes and individual ranges per station gives a rough
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Table 5.2.5a

ORBITAL AND PHYSICAL CHARRCTERISTICS
OF STARLETTE (7501001)

APOGEE HEIGHT
PERIGEE HEIGHT
ECCENTRICITY
INCLINATION

PERIOD

ASCENDING NODE RATE
ARGUMENT OF PERIGEE RATE
AREA

MASS

SHAPE

RADIUS

ONBOARD INSTRUMENTATION

90

1105 km
810 km
0.02

49°.8

104 min.
-3.94 */day
3.30 */day
0.04524 m?
47.250 kg
SPHERE

12 cm

RETROREFLECTORS




indication of the varying repetition rates in this network. Based on
prior experience with STARLETTE and considering the quality of our a
priori models, a 5-day nominal arc length was choosen. The data were
edited using the GEODYN-II software package appended with editing
programs to perform post-fit residual analysis on station-by~-station and
pass-by-pass basis. Table 5.2.5c¢ gives a summary of the constants and
models used in the dynamical orbit determination process. The residual
analysis package was invaluable in locating data problems and
eliminating outliers. The philosophy here was to edit data points that
looked suspect where documentation was lacking for curable station
problems. Given the abundance of data, this process was beneficial in
creating a stable and bias-free set of tracking data. Figwe 5,2.52
shows a residual plot where one can clearly see an edited outlier and a
number of residuals of questionable quality. The latter had to be
edited manually and the whole process repeated until it converged. To
give an insight into what was achieved through this process, we have
included Tables 5.2.5d and 5.2.5e which show the apriori model fits and
those based on our first generation TOPEX model, the PGS—T2. The
improvement is highly significant. Table 5.2.5f gives a summary of the
statistics by station based again on the same set of data and the same
models as the previous two tables. We have analyzed forty-six 5-day
arcs covering a period from January 1984 through August 1984. These arcs
sample 2.2 periods of the argument of perigee and 2.6 periods of the
ascending node. We chose to start the editing process with the more
recent data since this period is characterized by intense tracking due
to the ongoing (at the time) MERIT campaign. The large amount of data
and the participation of new tracking stations for which we had no prior
performance records on any satellite made the editing effort more

complicated and tedious, but at the same time more important.
Starting with the "raw" data fits at the 1-2 meters level the

editing process resulted in a very significant reduction to about 60 cm

which was the typical RMS fit at the "normal- equation-forming" stage. A
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Table 5.2.5b

STRRLETTE DATA CATALOG
JANUARY 1983 - AUGUST 1984

SUMMARY BY STATIONS

LOCATION NAME NUMBER  PASSES  POINTS
POTSDAM, DDR POTSDM 1181 59 1271
SAN DIEGO, CA. MLO306 7062 3 30
AUSTRALIA MLO502 7090 64 3649
GREENBELT, MD. MLO501 7102 1 5
GREENBELT, MD. MLO702 7105 105 5499
QUINCY, CA. MLO802 7109 288 18247
MONUMENT PEAK,CA MLO402 7110 270 12059
PLATTEVILLE, CO. ML0201 7112 208 8589
HUAHINE, FR.POL. MLO101 7121 61 1033
MAZATLN, MEXICO MLO601] 7122 54 2733
MAUII, HAKWAII HOLLAS 7210 37 1441
METSAHOVI, FINN. FINLAS 7805 12 209
HELWAN, EGYPT HELWAN 7831 12 376
KOOTWIJK, HOLLAND KOOLAS 7833 32 419
WETTZELL, FRG WETZEL 7834 50 1602
GRASSE, FRANCE GRASSE 7835 7 111
SIMOSATO, JAPAN SHOLAS 7838 124 4690
GRAZ, AUSTRIA GRAZ 7839 106 3665
HERSTMONCEUX, UK RGO 7840 56 1609
AREQUIPA, PERU ARELAS 7907 939 44344
MATERA, ITALY MATERA 7939 289 15089
DIONYSO0S, GREECE DIOLAS 7940 6 8l
ZIMMERWALD, SHIZ 7810 29 691

TOTAL NO. OF PASSES = 2792
TOTAL NO. OF OBSERVATIONS = 127442
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Table 5.2.5c

DATA REDUCTION MODEL
FOR
STRRLETTE DATA EDITING

GENERAL PARAMETERS

GM 3.98600436 x 10'* m3/s?
SPEED OF LIGHT 299792458.0 m/s

R 63781370 m

1/f 298.257

JPL EPHEMERIDES DE-200/LE-200
ATHMOSPHERIC DENSITY MODEL JACCHIA 1971

GLOBAL PARAMETERS

GEOPOTENTIAL PGS13317°(36 x 36)

TIDES APRIORI TOPEX MODEL
POLAR MOTION & EARTH ROTATION APRIORI TOPEX SERIES
STATION POSITIONS LAGEOS SL6 SOLUTION

ARC PARAMETERS

STATE VECTOR 6
DRAG COEFFICIENT !
SOLAR RADIATION COEFFICIENT 1
MEASUREMENT BIASES NONE
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STATION MATERAL
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ITER NUSED  BASE RMS NEW RMS BIAS SIOMA TINE BIAS TIME BIAS SIGMA
1 76 6.630 4,422 -0.998508 0.114723 0.200471 0.024592
2 75 9.676 9.306 ~D.6482160 0.115527 0.077130 0.024806
3 75 8.676 0.306 -0.482160 0.115527 0.077130 0.024806
MBIAS 79394101 51 -0.6821605 $60115221714.028640115222842.
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Figure 5.2.5a. Example of Residual Analysis Package Diagnostic Plot from Starlette:

Matera Residuals Plotted Versus Time.
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Table 5.2.5d. Example of Residual Analysis for Starlette Laser Passes During Period
Statistics Based on Apriori Model (Pgs 1331°)

of January 3 to 7, 1984:

STANAM ISTA NTYPE YYMHDD MHMMSS NPTS ITER USED
GRAZ1 78393401 RANGE 860103 12643 33 3 33
ORAZ1 78393401 RANGE 340105 20521 &¢ 3 &
GRAZ1 278393401 RANGE 840105 35558 10 3 10
ORAZ1 78393401 RANGE 840106 39 3 %
GRAZ1 78393401 RANGE 840106 22656 3 %
ORAZ) 78393401 RANGE 840106 41448 25 3 25
ORAZ1 78593401 RANGE 840107 $41¢ . 3 L

TOTAL ?OIITS THIS STATION: 218

RMS OF UNADJUSTED DATA: 1.063
RMS OF ADJUSTED DATA: 0.089
STANAM ISTA NTYPE YYMMDD MHMMSS NPTS ITER USED
LAGU1102 71100402 RANGE 840107 744640 26 3 1
LAGU1102 711006402 RANGE 840107 93513 34 3 3
TOTAL ?DIN‘I'S TNIS STATIDN- 50
RMS OF UNADJUSTED DATA 0.763
RMS OF ADJUS ED DATA: 9.153
STANAM ISTA NTYPE YYWMDD WHMMSS NPTS ITER USED
RATERAL 79394101 RANGE 860103 30554 &) ¢ N
MATERA] 79394101 @aucE 84010¢ 33512 6% s &

YOTAL POINTS THIS STATION: 138

RMS OF UNADJUSTED DATA: 0.474
RMS OF ADJUSTED DATA: 0.161
STANAM ISTA WTYPE YYMMDD HMMMSS NPYS ITER USED
PLATVL] 71120201 RANGE 840105 104850 &0 4« 3
YOTAL POINTS TH1S SYAY!ON- 38
RMS OF UNADJUSTED DATA 1.160
RMS OF ADJUSTED DATA: 0.118
STANAM ISTA WYYPE YYMMDD MHMMSS NPTS ITER USED
QUIN1092 71090802 RANGE 840105 §5703 31 3 3
QUIN1D092 71090802 RANGE 840206 91659 39 3 3
TOTAL POINTS THIS STATION: 70
RMS OF UNADJUSTED DATA: 9.33¢6
RMS OF ADJUSTED DATA: 0.051
STANAM ISTA NKTYPE YYMMDD HNMMSS NPTS ITER USED
SIMOSATA 783836081 RANGE 840105 231608 L 3 ’
TOTAL POINTS THIS STATION: 9
RMS OF UNADJUSTED DATA: 4.333
RMS OF ADJUSTED DATA: 0.120
STANAN I1STA NYYPE YYMMDD MHMMSS NPTS ITER USED
YARAGI 70900801 RANGE 340105 134422 72 3 172

YARAGY 70900501 RANGE 840106 121436 56 7 &

YOTAL POINTS YNIS STATION: 121
RMS OF UNADJUSTED DATA: 0.341
RMS OF ADJUSTED DATA: 9.050

YI!TN. POINTS INPUTs  ¢S3
Jo1 USED' [11]

10 L EL L]
TOTAL OTN!l !DXTSI 14

NUMBER OF PASSES PROCESSEDs 17
NUMBER DELETED ENTIRELY= []

RMS OF UNADJUSTED DATA. 0.877
RMS OF ADJUSTED DATA. 9.108
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Table 5.2.5¢. Post Fit Residual Analysis for Starlette Laser Passes During Period of
January 3 to 7, 1984: Statistics Based on Pgs—T2.

STANAM ISTA WYYPE YYMWMDD HHMMSS NPTS ITER VUSED BIAS SIGMA T. BIAS SIGMA  FIT RMS DASE RMS MAXEL
GRAZ] 78393401 RANGE 840103 12643 33 2 33 -0.087 6.178 0.104 0.080 0.049 0.242 42.6
ORAZ) 78393401 RANGE 840105 20521 &6 2 6 -0.397 0.148 -0.041 8.043 0.080 0.428 80.8
ORAZ) 78393401 RANGE 840105 35558 10 2 10 0.115 0.960 -0.033 0.381 0.046 0.066 67.6
GRAZ] 78393401 RANGE 840106 3600 39 2 % 0.024 0.1¢61 -0.122 0.063 0.023 0.320 45.3
GRAZ] 78393401 RANGE 860106 22454 56 2 56 -0.092 8.134 -0.019 8.040 0.047 0.126 81.8
ORAZ] 78393401 RANGE 8640106 41448 25 2 25 =-0.199 0.206 -0.103 0.063 0.069 0.65¢ 71.6
ORAZ) 78393401 RANGE 840107 5416 9 2 9 =-0.303 6.813 ~0.056 0.386 0.049 0.233 64.0
YOTAL POINTS THIS STATION: 218

RMS OF UNADJUSTED DATA: 0.302

®MS OF ADJUSTED DATA: 0.055
STANAM ISTA MWTYYPE YYWMDD MHHMMSS MPTS ITER USED BIAS SIOMA V. BIAS SIOMA  FIT RMS BASE RMS MAXEL
LAGUL102 71100402 RANGE 840107 764440 16 2 16 =0.231 0.326 =0.001 8.078 8.094 0.262 50.6
LAGU1102 71106402 RANGE 840107 93513 34 2 3¢ ~0.062 0.341 -9.026 0.106 0.036 0.130 36.2

TJOTAL POINTS THIS STATION: S0

RMS OF UNADJUSTED DATA: 0.177

RMS OF ADJUSTED DATA: 6.059

STANAM ISTA MTYPE YYMMDD HHMMSS NPTS ITER USED BIAS SIOMA V. BIAS SIOMA  FIT RMS DBASE RMS MAXEL
MATERA] 79394101 RANGE 860103 50540 76 2 76 0.158 6.118 -0.018 9.030 0.095 0.201 39.4
MATERAL 79394101 RANGE 860104 33518 61 3 60 0.136 8.130 0.023 0.033 0.118 0.19¢ 39.2

TOTAL POINTS THIS STATION: 136

RMS OF UNADJUSTED DATA: 8.198

RMS OF ADJUSTED DATA: 8.105

STANAM ISTA NTYPE YYMMDD WHMMSS NPTS ITER USED BIAS SIGMA  T. BIAS SIOMA  FIT RMS BASE RMS MAXEL
PLATVL]1 71120201 RANGE 840105 104855 33 2 3 -0.2%7 6.208 0.084¢ 9.059 0.073 0.25¢ 41.0

TOTAL POINTS THIS STATION: 33

RMS OF UNADJUSTED DATA: §.254

RMS OF ADJUSTED DATA: 0.073

STANAM I1STA NTYPE YYMMDD NHHMMSS NPTS ITER USED BIAS SIGMA  T. BIAS SIOMA  FIT RMS BASE RMS MAXEL
QUIN1D92 71090802 RANGE 840105 35703 31 2 3 8.103 §.438 8.058 0.128 0.026 0.312 38.8
QUIN1092 71090802 RANGE 860106 91659 39 2 3 6.270 0.648 -5.9035 0.147 0.032 0.135 ¢0.5

TOTAL POINTS THIS STATION: 70

RMS OF UNADJUSTED DATA: 0.227

RMS OF ADJUSTED DATA. 9.029

STANAN ISTA WYYPE YYMMDD HHMMSS NPTS ITER USED BIAS SIGMA Y. BIAS SIGMA  FIT RMS BASE RMS MAXEL

SIMOSATA 78383601 RANGE 8640105 231608 L 2 L -0.656 3.503 =-0.364 8.743 0.117 2.691 46.3

TOTAL POINTS THIS STATION: 9

RMS OF UNADJUSTED DATA: 2.491

RMS OF ADJUSTED DATA: 0.117

STANAM ISTA WTYPE YYMMDD HHMMSS NPTS ITER USED BIAS SIOMA T, BIAS SIGMA  FIT RMS BASE RMS MAXEL
YARAG1 70900501 RANGE 8640105 13646412 72 2 72 -9.031 0.118 =-0.015 0.026 0.040 0.088 65.0
YARAG1 70900501 RANGE 8640106 121436 53 2 53 ~0.158 0.138 0.046 0.033 0.047 0.252 40.4
TOTAL POINTS THIS STATION: 125

RMS OF UNADJUSTED DATA: 0.175

RMS OF ADJUSTED DATA: 0.043

TJOTAL POINTS INPUT= 47
TOTAL USED= 646

EL 0
TOTAL OTHER EDITS= 1

NUMBER OF PASSES PROCESSED: 17
NUMBER DELETED ENTIRELYe 0

RMS OF UNADJUSTED DATA: 0.367
RMS OF ADJUSTED DATA: 0.067
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Table 5.2.5¢

STARLETTE RESIDUAL
STATISTICS SUMMARY

APRIOR! MODEL (PGS 1331)

STANAM ISTA NMTYPE YYMMDD HHMMSS NPTS ITER USED BIAS SIGMA  T. BIAS SIGMA  FIT RMS BASE RMS MAXEL
GRAZ1 78393401 RANGE 840103 12643 33 s 33 -2.041 0.178 0.539 0.080 0.157 2.211 42.6
GRAZ) 78393401 RANGE 8640105 20521 &6 3 &6 -~0.329 D.148 0.223 0.043 0.088 0.883 89.8
GRAZ1 78393401 RANGE 840105 35558 10 3 10 0.131 0.965 0.097 0.383 0.046 0.417 67.6
GRAZ} 78393401 RANGE 840106 3600 39 3 % 0.397 0.161 0.147 0.063 0.044 0.582 45.3
GRAZ1 78393401 RANGE 8640106 226454 56 3 56 0.390 0.136 -0.083 0.040 0.091 0.436 8).8
GRAZ1 78393401 RANGE 8640106 41448 25 3 25 0.039 0.206 -0.273 0.063 0.045 0.923 71.6
GRAZ1 78393401 RANGE 840107 5616 9 3 L] =-D.048 g.821 0.337 0.388 0.049 0.861 64.0
LAGU1102 71100402 RANGE 840107 76440 16 S 16 1.18 0.324 0.178 0.078 0.276 0.993 50.6
LAGU1102 71100402 RANGE 840107 93513 34 3 34 -1.209 0.341 0.309 0.106 0.043 0.630 36.2
MATERA] 79394101 RANGE 840103 S055¢ 381 6 77 0.153 0.114 -0.020 6.030 0.097 0.199 39.4
MATERAL 793941 RANGE 840104 33518 64 5 6l 0.585 0.129 0.087 0.033 0.219 0.68¢ 39.2
PLATVL] 71120201 ANG 8640105 104850 0 4« 3B =1.100 0.208 =-0.002 0.059 0.113 1.140 4).0
QUIN1092 71090802 RANG 840105 85703 31 3 3 $.259 0.439 -0.062 0.125 0.026 0.11¢ 38.8
QUINI092 71090802 RANGE 840106 91659 9 L B 1 4 1.688 0.649 =-0.349 0.147 0.065 0.644¢  60.5
SIMOSATA 78383601 RANGE 84640105 231608 9 3 9 0.649 3.752 0.673 0.795 0.120 4.333  46.3
YARAGl 70900501 RANGE 840105 1344)2 72 3 72 0.178 0.118 -0.057 0.026 0.063 0.317 65.0
YARAGl 70900501 RANGE 840106 121436 S¢ 1 & -0.097 0.144 0.095 0.039 0.020 0.380 «0.4
STANAN ISTA MTYPE YYMMDD HHMMSS NPTS ITER USED BIAS SIGMA  T. BIAS SIGMA  FIT RMS BASE RMS MAXEL
GRAZ1 783936401 RANGE 840103 12643 33 33 -0.087 .178 .10 0.080 0.049 0.2642 42.6
GRAZ1 783936401 RANGE 840105 20521 &6 46 -0.397 -1648 ~0.0641 9.043 0.080 0.428 80.3
GRAZ 783936401 RANGE 840105 35558 10 10 0.115 20 -0.038 0.381 0.046 0.066 €7.6
GRAZ 783936401 RANGE 840106 36 39 39 0.024 161 -0.122 0.063 0.028 0.320 &5.3
GRAZ 78393401 RANGE 860106 22654 -8.092 -0.019 0.040 0.047 0.12¢ 81.8
GRAZ 783936401 RANGE 860106 41448 25 25 -0.199 206 -0.103 0.063 0.069 0.45¢ 71.6
GRAZ 78393401 RANGE 840107 56416 9 -0.303 .318 ~9.056 0.386 0.049 0.233 64.0
LAGU1102 711004 RANGE 840107 74440 16 16 -0.231 326 =0.001 0.078 0.094 0.262 50.6
LAGU1102 711004 RANGE 840107 3513 34 34 -0.042 341 -0.026 0.106 0.036 0.130 36.2
TERAL 79394101 RANGE 840103 % 76 16 0.158 115 -0.013 9.030 9.095 0.201 39.4
WATERAL 793941 RANGE 840104 1 61 [ 1] 36 .130 0.023 9.033 0.118 0.19¢ 39.2
PLATVL] 71120201 RANGE 840105 104855 33 .208 0.084 0.059 8.073 0.25 41.0
QUIN1092 71090802 RANGE 860105 5708 31 3 .438 0.053 0.12% 9.026 6.312 38.8
QUINID92 71090802 RANGE 840106 §165 39 39 0.648 -0.035 0.147 0.032 0.135 60.35
SIMOSATA 78383601 RANGE 840105 231608 9 .503 ~0.364 8.743 0.117 2.691 &6.3
YARAG1 70900501 RANGE 8640105 134412 72 72 .118 =-0.015 0.026 0.040 0.088 65.0
YARAGl 70900501 RANGE 840106 121436 S3 $3 0.046 0.033 0.047 0.252 40.4
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detailed picture of the individual 5-day arc normal equations is shown
in Table 5.2.5g. The STARLETTE normal equations allowed for the
adjustment of geopotential harmonics, the selected subset of tidal
coefficients, the Earth orientation parameters, the station positions,
and the orbital arc parameters. The 46 matrices were subsequently
combined (after the elimination of the arc parameters) into a single
matrix, the STARLETTE C-mat. This allowed for an easier combination and
weighting of the data. The RMS of fit values from Table 5.2.5g are

shown pictorially in Figure 5.2.5b.

Forty six five-day arcs of recent (1984) STARLETTE laser ranging
data have Dbeen analyzed. The resulting normal equations have
contributed in the determination of the latest interim TOPEX model,
GEM-T1. Extensive data editing and a general overhauling of the
physical and mathematical models used in this analysis resulted in a
remarkably improved performance of these data. This is very encouraging
in light of the fact that the altitude of STARLETTE is relatively low
and its orbit is strongly influenced by gravity and tidal perturbations.
Its sensitivity to these forces however, coupled with the robustness of
the edited data set and STARLETTE's orbital similarities with TOPEX make

its contribution to the solution a very important one.

5.2.6 Analysis of LAGEOS Laser Ranging Observations

The utilization of Satellite Laser Ranging for monitoring the
earth's motions (both tectonic and rotational) has been greatly enhanced
by the May, 1976 launch of the LAGEOS satellite. LAGEOS stands for the
LAser GEOdynamics Satellite and is the first NASA satellite to be
launched exclusively to serve as a space-based laser target. The
nominal orbital characteristics for LAGEOS are described in Table
5.2.6a. The high altitude of the LAGEOS orbit reduces errors arising

from short-wavelength gravity, tidal and drag effects, leaving a strong
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Table 5.2.5g

EHAT S8UHHARY FOR STARLETTE

ARGUMENT

NUMBER OF WEIGHTED NUMBER OF OF PERIGEE

EPOCH OBSERVYATIONS RMS (m) STATIONS (AT EPOCH)
840102 633 5736 ? 328.219
840107 682 5172 9 343.032
840112 1043 6436 10 1.279
840117 1012 o2 10 12.217
840122 2270 4651 9 32.676
840127 958 4331 10 50.280
840201 847 .3903 7 64.865
840206 1499 5625 8 83.486
840211 398 6710 6 97.697?
840216 338 4215 5 113.218
840221 502 .8665 8 129.760
840226 841 1439 ? 144.072
840302 451 .8990 5 162.843
840312 16 6586 5 194.533
840317 741 4125 6 212.022
840322 1289 6363 9 227.683
840327 191 5744 8 247.62?
840401 2069 5924 ? 262.668
840406 2212 5219 6 279.917
840411 3084 5851 8 292.023
840416 827 .6289 8 312.347
840421 1437 .6480 ? 332.052
840426 893 .8068 9 342.073
840501 619 .5879 S 4.323
840506 874 .8000 4 20.754
840511 905 1750 4 36.110
840516 574 6051 8 54.741
840521 2250 2150 8 68.645
840526 1437 e 8 85.147
840531 2012 .6031 8 100.373
840605 1279 5656 LR} 115.013
840610 2160 .7684 10 133.685
840615 2323 5638 12 148.093
840620 1480 5611 9 165.902
840625 3451 6866 10 181.369
840630 1429 .4409 8 197.607
840705 119? .6200 ? 216.576
840710 550 .4866 S 231.370
840715 486 .3503 S 249.614
840720 824 1427 4 265.374
840725 350 4617 3 281.668
840730 754 4867 5 301.339
840804 149 63972 6 316.584
840809 921 5161 ? 335.486
840814 11720 5073 8 350.581
840819 2849 4891 8 7.096

46 EMATS 57356 .6120
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Figure 5.2.5b. STARLETTE E-MAT Summary.
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signal for the longest wavelength portion of the gravitional field.
Furthermore, by being extremely dense and having a perfectly spherical
shape (see figure 5.2.6a), LAGEOS also minimizes errors arising from
non- conservative forces like solar radiation pressure and albedo re-
radiation. Therefore, LAGEOS is an ideal satellite for improving the
determination of the long wavelength gravity field. A significant
distinction of LAGEOS over previous laser satellite missions is the
extensive international cooperation which has occured to enhance global
laser coverage. There is now a worldwide network of third generation
laser stations which is tracking LAGEOS as their highest priority
target. These constitute the largest and best distributed set of laser
observations which have ever been collected. In our present analysis, 5
years of laser data acquired on LAGEOS have been used in the GEM-T1
solution. These ranges have been condensed into laser "normal-points"
at two minute intervals. The time span selected contains the most
outstanding set of these data encompassing the years 1980 through to the
end of 1984. The NASA mobile laser systems were first deployed in late
1979 so early data sets are somewhat unsatisfactory. The additional
data from 1985, which is now available, will be added to the solution
over the next year. It is desirable to have at least six years of these
observations in our gravity solutions. Six years of tracking is
somewhat important because it corresponds to the beat period of the two
dominant polar motion terms, that of the annual and Chandler periods.
And LAGEOS data make a strong contribution to the definition of the pole
obtained within our solution. The LAGEOS data were reduced in monthly
arc lengths with a solar radiation pressure and along track
acceleration parameter allowed to adjust along with the epoch state
elements. These observations were carefully edited, and post-processing
analysis of these data indicate RMS of fits for monthly arcs of between
4.5 to 10 ecm. A summary of the LAGEOS arcs used to generate the normal
equations is presented in Table 5.2.6b.
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Launch:

Spacecraft:

Orbit:

Table 5.2.6a

LAGEOS
(LASER GEODYNAMICS SATELLITE)

May 4, 1976

Spherical, 60 cm diameter
406.965 kg
426 laser retro-reflectors, 3.8 cm diameter

Semi-major axis 12265 km
Inclination 109.8 degrees
Eccentricity 0.004

Perigee height 5858 km
Apogee height 9958 km

Node rate +0.343 deg/day
Perigee rate -0.214 deg/day
Semi-major axis rate -1.1 mm/day

103



Table 5.2.6b

EMAT SUMHARY FOR LAGEOS

ARGUMENT

NUMBER OF WEIGHTED NUMBER OF OF PERIGEE

EPOCH OBSERYATIONS RMS (m) STATIONS (AT EPOCH)
791230 1455 .2065 13 345.174
800129 2319 2210 14 338.042
800228 2639 2475 14 330.814
800329 2231 2228 14 321.579
800428 1543 .2396 10 311.512
800528 1926 .2336 9 313.865
800702 1801 2241 13 297.302
800801 3187 2237 13 290.785
800831 3496 .1934 16 287.046
800930 3336 .2088 18 281.014
801030 2751 2191 14 271.021
801129 1413 .2022 11 260.453
801229 794 1736 8 255.325
810128 1287 .1784 9 253.457
810227 2?39 1787 13 240.940
810329 1943 1913 1" 232.084
810428 1884 2057 9 226.531
810528 1944 2512 1" 221.412
810627 2187 .2555 12 212.269
810?27 2168 .1948 13 201.207
810826 2821 .2065 14 199.978
810925 3143 .2308 16 194.745
811025 1972 .2095 12 188.166
811124 15?3 2126 12 181.017
811224 1314 .3018 12 168.490
820123 1878 2427 12 172.349
820222 1883 2125 15 162.3?1
820329 1926 .2007? 12 153.1?7
820428 3084 .2055 12 148.207
820602 2488 1811 1 142.263
820702 2980 .2022 11 134.020
820801 2027 21972 13 126.356
820831 2?20 .2154 14 127.720
820930 3596 .1788 15 118.145
821030 1938 .1604 12 110.051
821129 2041 .1788 11 104.642
821229 1699 .1990 1 101.342
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LAGEOS cowro...

ARGUMENT

NUMBER OF WEIGHTED NUMBER OF OF PERIGEE

EPOCH OBSERVATIONS RMS (m) STATIONS (AT EPOCH)
830128 1494 .2204 12 97.008
830227 2010 .2378 14 87.259
830329 2187 .2079 14 79.935
830428 2405 .2180 13 79.208
830627 1920 511 8 64.706
830727 2751 1796 8 57.853
830831 2520 .1425 11 54.654
830930 3761 1760 1? 48.845
831030 3127 2306 17 36.054
831229 2729 .2583 1? 30.879
840128 2425 21722 16 23.527
840227 2437 2519 22 16.220
840329 3817 .2267 20 9.126
840428 4129 .2554 22 1.119
840528 4541 .2468 20 3.869
840627 4372 2724 19 349.233
840801 4857 2617 22 344.696
840831 4611 .2408 21 338.433
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Figure 5.2.6b. LAGEOS E-MAT Summary.
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5.2.7 Analysis of GEOQS-2 Laser Tracking Data

The GEOS-2 satellite was launched on April 28, 1968. This
satellite was one of the earliest geodetic missions initiated by NASA
and served several purposes. First and foremost, GEQ0S-2 carried
flashing lamps which allowed it to be photographed (as was GEOS-1) by a
globally distributed network of optical observatories. The National
Geodetic Satellite Program had an objective to unify the world's
tracking datums to the 5 to 10 m level of uncertainty with respect to
the geocenter. This was to be accomplished through an accurate reduc-
tion of these satellite photographic positions for use in solutions
(both geometric and dynamic) of camera locations within a global
reference system. It was an analysis of these early observations (NASA,
1977; Marsh et al, 1973) which satisfied the NGSP objectives. of
secondary interest was the calibration of NASA's Minitrack Network.
Cameras were located at all of the worldwide Minitrack installations and
the direction cosines obtained by these electronic fences were
calibrated against those simultaneous right ascension and declination
measurements acquired photographically. Fortunately, GEO0S-2 also
carried corner cubes and served as a target of opportunity for early

laser ranging experiments.

The characteristics of the GE0OS-2 orbit are given in Table
5.2.7a. GEOS-2 was intermittently tracked on a low priority basis by
the lasers for much of the 1970's. Tracking apparently ceased in the
middle of 1977. We thereby had a sparse data set to utilize for gravity
modeling investigations from third generation 1laser systems which
started to appear in the 1975 timeframe. Consequently, after an eval-
uation of data catalogues, we found only a limited number of possible
arcs for GEOS-2. To have a reasonably large sample, we were forced to
use the 1975 SAO data although these systems were not upgraded until
late 1975 to early 1976. Some of the earlier 1975 SAO data was found to

have range biases which were seen to be a function of range. The SAO
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data taken during 1975 were heavily edited, but a subset of them were

found to be satisfactory for inclusion in our GEM-T1 solution.

Five day arc lengths were used in the GEQS-2 data reduction and
normal equation solutions. In these arcs, a drag parameter per day, a
solar radiation coefficient per arc and the orbital state were all
permitted to adjust. The normal equations for 28 of these arcs were
generated and are summarized in Table 5.2.7b. Note that even when
including SAO lasers in many of the 1975 arcs, only 3 or 4 stations were

tracking over this time period.

Table 5.2.Ta
Orbital Characteristics of GEQS-2

Apogee Height 1569 km
Perigee Height 107T km
Eccentricity 0.03
Inclination 105.8 degrees
Anomalistic Period 112.1 minutes

5.2.8 Analysis of Optical and Low Inclination Satellite Observations

The optical observations acquired by a global network of predomi-
nantly SAO0 Baker Nunn observatories were the state-of-the-art in
satellite tracking throughout the 1960's. A reasonable data set was
acquired for over 60 satellites, rocket bodies, fragments, and space-
borne balloons of this era. These observations provided the data base
for the first comprehensive satellite-based gravity solution, that of
the Smithsonian Astrophysical Observatory in 1966. Surprisingly, these
observations are still making important contributions to the gravity
solution even though they have an observational noise which is four
orders of magnitude greater than that which is obtained by the best
laser tracking of the 1980's.
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Table 5.2.7b

EMAT SUHNMARY FOR G@E0S-2

ARGUMENT

NUMBER OF WEIGHTED NUMBER OF OF PERIGEE

EPOCH OBSERYATIONS RMS (m) STATIONS (AT EPOCH)
750708 595 1.3994 4 55.162
750803 638 1.6999 3 14.6?3
750815 4722 1.0250 3 354.021
750825 732 .8124 5 337.992
750901 416 1.0606 4 327.452
250906 573 .6148 5 319.665
750915 357 1.5540 5 301.713
750923 785 1.8013 5 289.163
751006 475 1.4644 4 268.194
751021 923 1.1042 4 244.037
751027 1351 2.1442 6 233.216
751102 1204 2.0522 6 223.079
760829 544 1.4113 5 95.276
760927 894 2.0713 5 49.825
761009 1435 1.6547 4 33.373
761019 1184 1.7588 ? 17.469
761025 1389 1.9487 ? 7.638
761103 1418 1.9838 6 349.358
761108 1364 1.0963 ? 341.704
761115 1475 1.2160 ? 331.432
770120 701 1.56725 5 222.343
770320 784 1.4755 6 125.612
770403 1412 1.28867 6 103.939
770409 12727 1.5900 5 95.076
770425 1040 1.4304 3 70.440
270430 881 1.1608 3 59.898
770607 1196 1.2060 6 1.945
770613 1098 1.6737 4 351.478
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The reason for this importance is found in the diversity of
objects which have been optically tracked. Any given satellite orbit
samples the earth's gravity field in a way which causes it to sense
certain perturbative frequencies. Each of these perturbations may be
mathematically described as some linear combination of the spherical
harmonics used to represent the gravity field. These sums (or "lumped-
harmonics™) can be very accurately determined although they are satel-
lite specific. Past experience has shown that data analyzed on many
orbits over a wide range of inclinations and mean motions yield a
sufficiently large set of '"lumped harmonics" to permit an accurate
deconvolution of this signal into well determined individual spherical
harmonic coefficients comprising a global gravity model. The optical
satellites continue to play an important role in filling in the inclina-
tion gaps found within the data sets available from other tracking
systems. In point of fact, the optical satellites are one of the best
sources of gravity information for low inclination objects. Results
will be discussed later showing the very important role these observa-
tions have in resolving accurate values for the zonal harmonic terms
{m=0 coefficients). Initially, six optically tracked satellites, only
one of which was exclusively camera tracked, were selected for
inclusion in the gravity solution. These satellites were : ANNA-1B,
TELESTAR-1, BE-B, BE-C, GEOS-1 and GEOS-2. TELESTAR-1 is solely an
optical satellite. While tracking data for them exists from other
systems, only optical data for ANNA-1B and BE-B have been used at
present to obtain GEM-T1. ANNA-1B's Doppler tracking and the very
limited laser data taken on BE-B are yet to be used. Both of the GEOS
satellites flew flashing lamps which permitted unlimited nighttime
visibility for observing instruments. The flashing lamp data sets from
the two GEOS were much more robust than those from the other four
satellites. These other satellites were passively observed, requiring
solar illumination of the objects against a dark sky. Therefore, data

collection was restricted to the dusk period or before dawn.
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A summary of the data, RMS of fit, perigee coverage and number of
stations found in each of the optical arcs are shown in tables 5.2.8a
through 5.2.8f. These data comprised the total optical data set found
in the PGS-T2 field (Marsh et al, 1986) which is a precursor of GEM-T1.

The optical data have a precision of approximately two seconds of
arc. The weighted observation residuals (whose RMS values are given in

Tables 5.2.8a to 5.2.8f) were calculated as:

declination: A = —

N : a
right ascension: Aaw = l -—

where

AS, Ao are the observation residuals in declination and

right ascension from the orbital fit, and
Adw, Aaw are their corresponding weighted residuals.

Figure 5.2.8a presents the uncertainties for the PGS-T2 field
obtained from a scaled covariance of the solution. These values can be
compared to figure 5.2.8b which is a similiar result from the GEM-L2
field. What is strikingly different between the two sets of uncertain-
ties is the degradation of the accuracy for the zonal harmonics within
PGS-T2. This degradation is confirmed when the values for the zonals
are compared to those found in GEM-L2. The (PGS-T2) minus (GEM-L2)
zonal harmonic differences are many times greater than the uncertainty
in the GEM-L2 determination of these terms (see Figure 5.2.8¢).
Therefore, we concluded that an inadequate coverage of orbital inclina-
tions was used in obtaining PGS-T2 with significiant information being

absent from low inclination objects.
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Table 5.2.8a

ANNA-1B OPTICAL 7-DAYS ARCS

NO. OF WEIGHTED NO. OF ARGUMENT
NO. EPOCH 0BS. RMS STATIONS | OF PERIGEE
ARCSEC/2 (AT EPOCH)
1 621101 157 1.294 9 207.7
2 621115 126 1.413 10 248.1
3 621122 154 1.212 6 276.3
G 621129 158 1.221 9 294.2
5 621213 258 1.201 10 343.6
6 621220 262 1.155 11 358.1
7 631107 64 1.149 4 228 .4
8 631114 98 1.109 10 245.9
9 631121 78 1.479 9 269.3
10 631128 36 1.028 6 295.7
11 631205 118 1.293 7 316.6
12 631212 183 1.360 8 336.0
13 631219 232 1.577 7 3.2
14 631226 56 1.173 6 17.5
15 640102 36 0.940 G 39.8
16 640110 56 0.875 9 65.9
17 660117 82 1.226 8 75.2
18 651128 162 1.017 11 294.9
19 660116 130 0.905 6 85.4
20 660123 102 1.076 6 101.1
21 660130 120 1.122 7 119.9
22 660215 184 0.994 7 163.3
23 660222 250 1.063 6 188.8
26 660301 96 1.169 4 206.9
25 660308 147 0.899 6 227 .9
26 660315 318 1.132 6 255.4
27 660329 132 1.311 7 297.7
28 66046410 264 1.079 7 325.4
AVERAGE 148 1.160 7
TOTAL 4151
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Table 5.2.8b

BE-B 7-DAYS ARCS
NO. OF WEIGHTED NO. OF ARGUMENT
NO. EPOCH 0BS. RMS STATIONS | OF PERIGEE
ARCSEC/2 (AT EPOCH)
1 641026 38 1.6427 8 104.7
2 641102 60 1.309 11 85.3
3 641109 38 1.021 3 76.8
4 650112 52 1.173 6 266 .7
5 650203 32 1.139 4 213.1
6 650323 54 1.005 9 92.0
7 650406 30 1.329 6 59.4
8 650415 46 1.555 8 41.2
9 650624 30 1.300 6 14.7
10 650613 50 1.357 5 262.7
11 650627 40 1.166 8 196.1
12 650716 30 1.451 8 149.2
13 670226 211 1.181 9 100.2
14 670305 56 1.258 4 88.8
15 670312 128 0.909 6 65.7
16 670319 228 1.109 6 52.6
17 670507 60 1.148 4 284.8
18 670514 154 1.461 5 269.2
19 670521 232 1.064 12 245.7
20 670528 170 0.9383 8 233.4
AVERAGE 87 1.217 7
TOTAL 1739
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Table 5.2.8¢

BE-C OPTICAL 7-DAYS ARCS

NO. © WEIGHTED NO. OF ARGUMENT
NO. EPOCH 0BS. RMS STATIONS | OF PERIGEE
ARCSEC/2 (AT EPOCH)
1 650619 646 1.381 % 327.6
2 650626 56 0.998 6 1.5
3 650703 52 1.326 7 38.7
4 650710 56 1.113 8 73.9
5 650717 94 1.104 9 109.0
6 650724 155 1.225 9 145.3
7 650731 80 1.080 11 180.3
8 650807 48 1.079 10 217.7
9 650814 62 0.871 8 253.7
10 650821 76 0.983 9 135.8
11 650828 50 1.190 5 237.9
12 650904 38 1.124 7 4.8
13 650911 66 1.002 9 38.9
14 650918 66 0.848 8 77 .4
15 650925 58 1.0384 11 109.2
16 651002 38 1.188 5 147.5
17 651009 62 1.220 9 182.1
18 651016 66 1.164 9 218.9
19 651023 54 1.200 9 255.7
20 651030 56 0.965 8 293.3
21 651106 638 1.3466 4 329.0
22 651113 58 0.940 8 6.0
23 651120 38 1.155 6 41.6
24 651127 34 1.060 9 77.5
25 651210 48 1.114 7 142.5
26 651217 32 0.865 8 179.8
27 651225 54 1.337 9 219.2
28 660101 73 1.079 9 258.7
29 660108 92 0.970 7 293.7
30 660115 67 0.983 6 331.4
31 660301 216 1.107 9 201.5
32 660308 301 0.985 10 238.2
33 660315 374 0.957 9 275.6
34 660322 564 0.897 6 311.4
35 660329 269 1.096 7 349.5
36 660405 235 0.992 7 26.2
37 660412 274 0.854 9 60.7
38 660419 299 0.994 8 95.7
39 660626 366 1.051 3 130.9
40 660503 210 1.145 9 167.8
51 660510 270 0.986 9 201.9
42 660517 257 0.858 9 241.46
43 660524 189 0.886 7 275.9
44 670312 185 1.089 9 366.0
45 670319 327 1.090 9 23.5
46 670326 207 1.062 7 57.8
47 670402 472 1.116 8 94.0
438 670410 235 1.173 10 135.7
49 670417 250 1.187 10 169.4
50 6706424 204 1.074 8 206 .4
AVERAGE 150 1.071 8
TOTAL 7501
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Table 5.2.8d
GEOS-1 OPTICAL 7-DAYS ARCS

NO. OF WEIGHTED NO. OF ARGUMENT
NO. EPOCH OBS. RMS STATIONS | OF PERIGEE
ARCSEC/2 (AT EPOCH)
1 651108 264 0.920 9 150.5
2 651115 331 1.051 10 154.7
3 651122 1692 0.727 17 159.9
4 651129 883 0.785 22 166.4
5 651213 1177 0.829 22 173.5
6 651220 1426 1.001 25 177.3
7 651227 1291 1.126 30 182.2
8 660103 769 1.231 26 187.5
9 660110 1524 1.036 29 191.4
10 660117 1722 0.980 26 196.0
11 660124 1296 0.862 27 200.9
12 660131 838 0.961 22 205.2
13 660207 364 0.901 18 209.4
14 660214 773 0.954 21 214.8
15 660221 1249 0.836 25 218.6
16 660228 967 0.889 26 223.7
17 660307 1506 1.038 36 228.8
18 660314 2673 0.823 30 232.9
19 660604 1781 0.865 30 266 .6
20 6604611 1879 0.805 30 250.8
21 660425 20346 0.778 31 260.6
22 660502 2079 0.771 28 265.0
23 660509 1471 0.770 24 270.3
24 660516 763 0.724 17 276.7
25 660523 263 0.649 11 280.0
26 660709 36485 0.780 31 310.5
27 660716 3780 0.857 30 315.6
28 660723 3433 0.781 28 319.9
29 660730 3039 0.792 25 324.5
30 660806 1791 0.688 28 329.7
31 660813 1506 0.667 20 333.9
32 660820 1091 0.704 16 338.2
33 660827 594 0.585 11 343.5
34 660903 702 0.615 15 348.0
35 660922 2218 0.919 9 359.7
36 661006 2378 0.892 22 9.8
37 661013 1721 0.803 24 13.7
38 661020 1446 0.809 26 18.6
39 661115 1141 0.707 14 35.1
40 670226 214 0.987 10 101.9
4] 670305 575 0.9351 8 106.2
42 670312 375 0.928 11 110.1
43 670319 286 0.971 7 115.1
AVERAGE 1413 0.854 22
TOTAL 60750
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Table 5.2.8¢e

GEOS-2 OPTICAL 7-DAYS ARCS

NO. OF WEIGHTED NO. OF ARGUMENT

NO. EPOCH OBS. RMS STATIONS | OF PERIGEE

ARCSEC/2 (AT EPOCH)
1 630315 1378 0.857 26 67.1
2 680322 1938 0.865 27 53.5
3 680329 1664 0.803 32 446.6
4 680605 1613 0.753 33 346.6
5 680412 1607 0.986 32 21.7
6 680419 2132 1.040 36 11.0
7 6306426 1772 0.737 35 357.4
8 680503 1696 0.826 30 367 .7
9 680510 1427 0.798 27 338.7
10 680517 1619 0.720 24 3264.3
11 680524 1390 0.724 26 313.2
12 680531 1196 0.702 18 301.3
13 680607 2098 0.754 30 289.1
14 680614 2775 0.723 31 279.8
15 680621 2978 0.709 34 266 .6
16 680628 417 0.702 17 255.0
17 680719 1712 0.727 30 220.0
18 680814 1172 0.668 15 177 .2
19 680828 1220 0.922 30 156.9
20 680904 1793 0.920 29 143.3
21 680911 1242 0.808 29 134.2
22 6809138 2863 0.766 35 121.8
23 680925 1650 0.829 28 109.5
26 681002 2007 0.932 29 100.2
25 681009 1954 0.851 30 87 .4
26 681016 1254 0.850 29 77 .4
27 681023 1616 0.852 29 67.6
28 681116 869 0.832 14 28.5
29 681217 463 0.97¢0 13 336 .4
30 690128 729 1.030 9 269.1
31 690204 908 1.099 13 256 .0
32 690211 912 0.995 12 264.6
33 690218 579 1.085 9 235.3
34 690225 429 0.969 11 221.3
35 690304 760 0.931 13 210.1
36 690311 908 0.927 13 198.3
37 690318 847 0.851 12 186.9
338 690325 675 0.874 12 178.2
39 690331 861 0.770 19 167 .9
40 690407 1068 0.758 22 155.4
41 6904614 839 0.762 11 143.3
42 690421 1259 0.816 23 133.5
43 690428 778 0.774 18 121.7
44 690505 1160 0.761 20 110.7
45 690512 491 0.669 9 100.5
46 690519 6385 0.778 9 87.4

AVERAGE 1335 0.846 22
TOTAL 616403
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Table 5.2.8f

TELSTAR-1 OPTICAL 7-DAYS ARCS

WEIGHTED ARGUMENT
NO. EPOCH RMS OF PERIGEE
ARCSEC/2 (AT EPOCH)
1 620713 1.096 5 170.1
2 620725 1.211 0 193.9
3 620801 1.112 7 207 .8
4 620808 0.989 9 221.8
5 620816 1.482 7 237.7
6 620823 1.113 7 251.7
7 620830 0.936 5 265.5
8 620913 1.127 6 293.2
9 620920 1.102 7 307.2
10 620927 1.043 10 321.2
11 621004 1.122 9 335.2
12 621018 1.225 11 3.0
13 621025 1.171 11 16.9
14 621101 1.037 10 30.8
15 621108 1.256 7 64.5
16 621115 1.187 9 58.5
17 621122 1.004 7 72.4
18 621206 1.405 9 100.2
19 621213 0.898 7 116.1
20 630207 1.047 6 225.3
21 630214 0.840 10 239.3
22 630221 0.965 10 253.2
23 630228 0.853 11 267 .0
24 630307 0.806 7 280.9
25 630314 0.783 8 294.7
26 630328 1.095 8 322.7
27 630416 1.033 10 356.5
28 630421 0.767 10 11.0
29 630526 0.884 5 79.9
30 630616 0.764 12 121.0
AVERAGE 1.045
TOTAL
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Table 5.2.8h

PEOLE LASER+OPTICAL 7-DAYS ARCS

NO. O WEIGHTED NO. OF ARGUMENT
NO. EPOCH 0BS. RMS STATIONS | OF PERIGEE
ARCSEC/2 (AT EPOCH)
1 710225 736 2.840 % 104.7
2 710304 663 1.730 % 191.6
3 710507 815 1.400 5 324.3
4 710527 1594 2.810 4 220.4
5 710610 104 4.270 1 55.5
6 710623 239 0.680 2 222.3
AVERAGE 692 2.29 3
TOTAL 4151
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Table 5.2.8i

DI-D OPTICAL 7-DAYS ARCS

NO. OF | WEIGHTED | NO. OF | ARGUMENT
EPOCH OBS. RMS STATIONS | OF PERIGEE
ARCSEC/2 (AT EPOCH)
1 | 670219 166 1.138 7 156 .2
2 | 670226 250 1.113 10 194.5
3 | 670305 432 1.066 7 232.1
¢ | 670312 275 0.957 3 270.1
5 | 670319 176 1.030 7 308.1
6 | 6706430 1003 0.967 11 173.7
7 | 670507 1367 1.020 11 211.6
8 | 670514 1592 0.934 12 269.5
9 | 670521 854 1.360 16 287.1
AVERAGE 679 1.065 10
TOTAL 6111
DI-D LASER + OPTICAL 7-DAYS ARCS
NO. OF | WEIGHTED | NO. OF | ARGUMENT
EPOCH 0BS. RMS STATIONS | OF PERIGEE
ARCSEC/2 (AT EPOCH)
1 | 710623 3663 1.060 6 108.1
2 | 710507 1324 1.930 9 183.4
3 | 710514 2027 0.950 10 221.5
4 | 710703 1606 1.480 2 132.5
5 | 710710 2368 1.870 2 169.7
6 | 710719 347 1.890 G 218.7
AVERAGE 1939 1.530 5
TOTAL 11633
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Table 5.2.8j
VANGUARD-2 7-DAYS ARCS

NO. OF WEIGHTED NO. OF ARGUMENT
NO. EPOCH 0BS. RMS STATIONS | OF PERIGEE
ARCSEC/2 ’ (AT EPOCH)
1 660202 42 1.121 6 252.4
2 660209 70 0.868 6 290.0
3 660216 136 1.192 8 326.9
4 660223 170 1.039 8 3.8
5 660302 136 1.243 9 61.3
6 660309 163 1.003 9 77.9
7 660316 269 0.885 6 114.9
8 660323 231 1.221 8 152.0
9 660330 64 1.194 8 188.8
10 660607 38 1.165 8 231.3
AVERAGE 130 1.093 8
TOTAL 1299
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Table 5.2.8k

VANGUARD-2RB 7-DAYS ARCS

NO. OF WEIGHTED NO. OF ARGUMENT
NO. EPOCH 0BS. RMS STATIONS | OF PERIGEE
ARCSEC/2 (AT EPOCH)
1 600402 42 1.273 4 357.5
2 600609 30 0.846 2 31.7
3 6006417 40 1.643 5 71.3
4 600627 30 1.007 7 120.7
5 600505 76 1.298 5 160.3
6 600512 92 1.427 6 194.6
7 600519 124 1.020 7 229.4
8 600526 94 1.173 8 226.3
9 600608 55 0.920 6 328.6
10 600717 105 1.259 8 0.0
AVERAGE 69 1.187 6
TOTAL 6386
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Table 5.2.81

DI-C OPTICAL 7-DAYS ARCS

NO. OF WEIGHTED NO. OF ARGUMENT

NO. EPOCH 0BS. RMS STATIONS | OF PERIGEE

ARCSEC/2 (AT EPOCH)
1 670220 164 1.061 4 217.9
2 670227 158 1.195 7 259.0
3 670306 300 1.071 10 301.5
4 670313 201 1.049 7 343.6
5 670320 127 0.949 G 26.8
6 67046416 2644 0.921 8 183.6
7 670423 400 1.055 8 226 .7
8 670430 720 1.001 9 267 .8
9 670507 196 0.902 9 308.8
10 670514 202 1.003 10 351.9

AVERAGE 271 1.021 8
TOTAL 2712

DI-C LASER + OPTICAL 7-DAYS ARCS

NO. OF WEIGHTED NO. OF ARGUMENT
NO. EPOCH OBS. RMS STATIONS | OF PERIGEE
ARCSECs2 (AT EPOCH)
1 710401 751 0.780 4 165.6
2 710608 6938 1.320 10 213.0
3 710615 3783 2.580 8 255.9
G 710622 2382 2.230 8 297 .8
AVERAGE 1903 1.720 7
TOTAL 7614

126




COURIER-1B 7-DAYS ARCS

Table 5.2.8m

NO. OF | WEIGHTED | NO. OF | ARGUMENT
NO. EPOCH 0BS. RMS STATIONS | OF PERIGEE
ARCSEC/2 (AT EPOCH)
1 661224 334 1.130 9 95.5
2 | 670107 307 1.183 8 211.8
3 | 670114 368 1.072 8 273.6
4 | 670121 301 1.087 10 332.1
5 | 670128 237 1.059 9 27.8
6 670602 97 0.971 5 343.6
7 670609 97 1.150 5 40.5
8 | 670616 151 1.074 7 94.1
9 | 670623 258 1.010 7 150.2
10 | 670708 326 1.244 7 276 .6
AVERAGE 268 1.098 8
TOTAL 2476
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To remedy this situation, data sets of six additional satellites
were selected for inclusion in the model. These satellites were
COURIER-1B, VANGUARD 2 rocket body, VANGUARD 2, DI-C, DI-D, and PEOLE.
The later three of these satellites were tracked by the first generation
laser systems in the early 1970's. Tables 5.2.8g through 5.2.9m
summarize the data contribution of these low inclination satellites. As
it will be discussed later, the inclusion of these data had a dramatic

positive impact on the resulting GEM-T1 gravity solution.

5.2.9 Analysis of BE-C Laser Observations

Beacon Explorer-C was launched from Wallops Flight Facility,
Wallops Island, Virginia in 1965. The satellite was magnetically
stabilized, had reasonably large solar panels and fortunately also
carried a ring of laser retro-reflectors. Because of its low inclina-
tion, BE-C became a favorite target for early North American crustal
motion studies. BE-C at times, was visible to laser sites located in
the United States on three to four successive revolutions. Therefore,
a large BE-C data set could be acquired in a short time interval
enabling short arcs to be utilized in station position determination
solutions. To support these studies, the global laser network tracked
BE-C often, yielding a reasonably robust data set. However, given this
satellite's magnetic stabilization and the location of its corner cubes
at its lowest end, BE-C unfortunately was not visible to lasers located

beyond the equatorial region of the Southern Hemisphere.

The orbital characteristics for BE-C are presented in Table
5.2.9a. This satellite was studied using 5 day arcs. A drag parameter
per day, a solar radiation pressure coefficient and the orbital state
vector were adjusted within each arc. In general, the laser data taken
on BE-C were quite good, being data from third generation systems which

were globally deployed to support the LAGEOS mission. Since this object
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was and remains a satellite of interest, data from 1979 onwards were
sufficient to have this satellite well represented in our gravity
modeling solutions. The normal equations generated from BE-C tracking
data are shown in Table 5.2.9b. In all, 39 arcs of BE-C laser data were
used in the GEM-T1 solution with other additional arcs being available
for field testing.

Extensive tests of the drag parameterization on BE-C were

performed and are found summarized in Section 7.2.2.
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Table 5.2.9a. Orbital Characteristics of BE-C

Semi-Major Axis
Apogee Height
Perigee Height
Eccentricity

Inclination

Mean Motion

Beat Period

7507 km
1320 km
940 km
0.0257
41.19 degrees

13.35 revolutions/day
5.5 days
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Table 5.2.9b

EMHAT SUNHARY FOR BEC

ARGUMENT

NUMBER OF WEIGHTED NUMBER OF  OF PERIGEE

EPOCH OBSERYATIONS RMS (m) STATIONS (AT EPOCH)
790320 1153 1.2126 8 18.204
790402 1535 1.7486 8 81.950
790411 2472 1.4003 8 128.830
790417 3596 1.2484 9 161.207
790426 3265 1.1535 8 207.915
790501 1904 1.3096 6 232.713
790512 3136 1.2258 6 291.352
790523 ii?3 1.4735 4 349.258
790813 614 1.3281 S 51.989
791022 1254 1.1893 8 54.306
91112 1765 1.1033 ? 161.403
791202 986 1.4961 9 265.595
791217 1002 1.3430 ? 344.681
800115 973 .6662 ? 133.182
800122 1022 . 7459 10 168.528
800129 2202 1.1481 ? 206.047
800205 1710 .9070 ? 239.858
800408 1460 1.2113 8 206.400
800505 1551 1.1468 8 349.147
800528 644 2.1713 4 106.631
800602 1197 1.2983 6 131.798
800728 1215 1.5013 8 62.832
800802 1175 2.0744 10 89.221
800915 1683 1.4970 ? 99.180
800923 1564 1.5275 10 359.756
801006 1412 1.6996 10 63.421
801013 1419 1.2794 9 101.679
801124 632 1.083? S 319.695
801201 1010 1.4706 6 355.343
801215 1076 1.2099 ? 67.447
810303 1911 1.5659 9 111.785
810317 1760 1.1450 ? 181.514
810728 1357 1.3487 ? 149.842
810817 1266 1.3525 S 254.153
810924 2039 1.4846 ? 92.630
811006 3997 1.4363 8 150.636
811012 217 1.7980 8 182.613
811019 2258 1.0116 ? 221.105
820201 1135 1.2684 6 46.323
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SECTION 6.0
DEFINITION OF A PRIORI GEOCENTRIC
TRACKING STATION COORDINATES

In order to compute an improved preliminary gravity field model
for the TOPEX mission, the coordinates of all contributing tracking
stations must be referred to one unified coordinate system. The
reference frame for this work will be briefly described in the course of
this section as well as the procedures and transformations required to
bring existing station coordinates into a unique system. The existing
station coordinates are in a variety of coordinate systems from various
solutions made in past years. The coordinate system chosen for the
TOPEX work is closely related to GSFC's laser coordinate system, SL-6.

6.1  COORDINATE SYSTEM DEFINITION

The unified coordinate system developed for the a priori station
positions needed for the TOPEX gravity model project is based upon the
laser coordinate system developed by GSFC from LAGEOS tracking, known as
the SL-6 system [for a description of a typical laser coordinate
solution, see Smith et al. (1985)]. The longitude definition was
adopted from that used in the MERIT campaign [Melbourne, et al. (1983)].
Thus all of the station coordinates that were transformed into the SL-6
system were ultimately rotated by +0.144525 arcsec in longitude to
accommodate the McDonald Observatory reference meridian definition. A
zero mean pole position was adopted to better model the mean figure and
rotation axes, and all station coordinates were rotated further to this
zero mean pole origin. This issue is considered in more detail
elsewhere in this document. The resulting coordinate frame will be
referred to as the TOPEX Coordinate System (TCS). The station

coordinates are put in Cartesian form for use in the data-reduction and
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the E-matrix generation runs, but, for the purpose of cataloging, the
coordinates have also been transformed to geodetic form. The geodetic
coordinates refer to an ellipsoid with a semi-major axis of 6378137 m
and a flattening of 1/298.257.

6.2 INITIAL STATUS OF STATION COORDINATES

The station positions to be transformed into the TCS exist in a
variety of coordinate systems. These include local datum coordinates
and dynamically derived coordinates from solutions such as GEM-9 [Lerch
et al. (1979)], and GSFC-73 [Marsh et al. (1973)]. The means for deter-
mining the transformations is provided by a set of laser sites for which
both the SL-6 coordinates and the datum or dynamically determined coord-
inates are known. Table 6.1 lists the laser sites and their unmodified
SL-6 coordinates that were used in this work. The approximate epoch for

these stations is 1982.

6.3 THE TRANSFORMATION MODELS

Two transformation models were used to complete this task. The
first model utilizes the coordinates for widely distributed laser
stations known in both coordinate systems, the SL-6 system and the other
coordinate system of interest (e.g., local datum or dynamically
determined system) for which we wish to establish a rigorous
transformation. The second model employs a simple linear transformation
for stations which are in close proximity to one of the laser stations
listed in Table 1. By "close proximity", we mean that station
separations do not exceed 100 km. Beyond this distance, the errors
committed by ignoring scale and rotation parameters can grow rapidly to

a size of a few meters. This aspect will be described shortly.
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Table 6.1 Laser sites known from the SL6 dynamic solution

Station latitude longitude ellipsoidal
NAME | no. d m s d m s height
QUINY 7051 39 58 24.5710 239 3 37.5530 1052.8800
EASTER 7061 -27 8 52.1650 250 36 58.9940 110.5550
SANDIE 7062 32 36 2.6580 243 9 32.7810 981.4700
STALAS 7063 39 1 13.3620 283 10 19.7950 12.1670
GSFCLS 7064 39 1 15.1040 283 10 18.6050 10.1530
BDILAS 7067 32 21 13.7620 295 20 37.927 -30.1170
GRKLAS 7068 21 27 37.7710 288 52 5.0330 -25.T760
RAMLAS 7069 28 13 40.6520 279 23 39.2980 -30.6690
BEARLK 7082 41 56 0.8960 248 34 45.5370 1955.9060
OVRLAS 7084 37 13 55.6560 241 42 15.1130 1171.0190
GOLDLS 7085 35 25 27.9630 243 6 48.9170 958.3230
FTDAVS 7086 30 40 37.3040 255 59 2.4810 1954.3160
YARLAS 7090 -29 02 47.4100 115 20 48.1070 234.2260
HAYLAS 7091 42 37 21.6890 288 30 44,3390 84.9250
KWJLAS 7092 9 23 37.6890 167 28 32.4860 25.7920
SAMLAS 7096 -14 20 7.5170 189 16 30.3570 41.8820
GSF100 7100 39 1 15.4510 283 10 47.6350 3.1100
GSF101 7101 39 1 16.2050 283 10 42.8350 1.3140
GSF102 7102 39 1 14,3800 283 10 18.7920 10.8910
GSF103 7103 39 1 14,6070 283 10 18.7950 10.8330
GSF104 Ti104 39 1 17.0820 283 10 36.8380 "2.8980
GSF105 7105 39 1 14,1640 283 10 20.1580 12.0840
QUILAS 7109 39 58 30.0020 239 03 18.9490 1099.2260
MONLAS 7110 32 53 30.0020 243 34 38.2580 1831.8602
PLALAS 7112 40 10 58.0010 255 16 26.3360 1494, 4826
OVRLAS 7114 37 13 57.2120 241 42 22.2150 1170.9230
GOLLAS 7115 35 14 53,9000 243 12 28.9490 1031.5171
MUILAS 7120 20 42 27.3920 203 44 38.1020 3060.6295
HUANIL 7121 -16 44 0.6830 208 57 31.7780 40.1250
MAULAS 7210 20 42 25.9960 203 44 38.6000 3061.2004
FINLAS 7805 60 13 2.2880 24 23 40.2110 71.2110
KOOLAS 7833 52 10 42.2450 5 48 35.1190 86.4620
WETLAS 7834 49 08 41.7770 12 52 40.9670 654.0907
GRALAS 7835 43 45 16.8840 6 55 15.8640 1315.9275
SHOLAS 7838 33 34 39.7210 135 56 13.1890 ~ 94,3156
RGOLAS 7840 50 52 2.5610 0 20 9.8620 68.2651
FORLAS 7885 30 40 37.3060 255 59 2.4780 1954.2694
QUILAS 7886 39 58 30.0180 239 3 18.0180 1102.4716
VANLAS 7887 34 33 58.3570 239 29 57.9780 597.2122
HOPLAS 7888 31 41 6.3150 249 7 18.5000 2327.6088
YUMLAS 7894 32 56 20.9340 245 47 48.6070 234.61L46
ARELAS 7907 -16 27 56.7010 288 30 24.6030 2485.1860
HOPLAS 7921 31 41 3.2220 249 7 18.8370 2345.8548
NATLAS 7929 -5 55 40.1350 324 SO 7.2190 32.4910
MATLAS 7939 40 38 55.7930 16 42 16.6860 528.8756
ORRLAS 7943 -35 37 29.7560 148 57 17.1240 941,8380
ARESAO 9907 -16 27 56.7010 288 30 24.6030 2485.1860
HOPSAO 9921 31 41 3.2220 249 7 18.8370 2345.8548
NATSAO 9929 -5 55 40.1350 324 50 7.2190 32.4910

ap = 6378144.11, £ = 1/298.255
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6.3.1 Seven Parameter Transformation

The seven parameter transformation, also
Bursa/Wolf transformation [Leick & van Gelder

transformation relating two geodetic coordinate

sometimes known as the
(1975)]1, is a rigorous

systems when only small

rotations are involved. The transformation has the form

- -8SL6 - - - - — — dat
AX 1 w -y X
= AY | + (1 + AL) |-w 1 € Y (6.1)
AZ b - 1 Z
--1 - - - -1
where
—x- dat is the ith station's Cartesian coordinates referred
to the local datum {(or other coordinate systems,
depending on the case),
--1i
w, ¥, and € are small Euler rotations about the Z,Y,X axes
respectively,
AL is a scale factor, and
AX,AY,AZ are translations between the local datum (or other

coordinate systems) and the SL-6 system.

The seven parameters are determined in a least squares solution by
comparing the laser station coordinates in both systems for which the
transformation is desired. Further details and a derivation are found
in Rapp (1983).
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6.3.2 The Linear Translation

The approximate linear translation of the ith station into the
SL~6 system is found from

¢iSLG - ¢ciiat+ (¢§L6_ ¢gat)
A§L6 - A<11at+ (A§L6_ Ajat) (6.2)
H§L6 - Hciiat+ (H?LG- Hgat)

where j denotes the near-by jth laser station having its coordinates

known in both coordinate systems (e.g., in SL6 and in the local datum
(dat)). Some errors can be expected to arise in this model primarily
due to neglecting scale and rotation parameters. This is especially
true when stations i and j are relatively far apart. A computation was
made to ascertain the size of these errors as a function of distance
using the NAD to SL-6 transformation. It was found that errors in
longitude grow most rapidly and the magnitude of the error can be as
large as 3 meters at a distance of 100 km. The linear method was
primarily used to determine older optical and doppler sites in our new

system when they were situated near laser tracking stations.

6.4  NUMERICAL RESULTS

This section will highlight the numerical aspects of the
transformations used to establish the table of TOPEX a priori station
positions. Table 6.2 lists the stations used to determine the trans-
formation parameters relating: NAD 27 to SL-6; GEM-9 to SL-6; and
GSFC-73 to GEM-9. The TOPEX a priori station coordinates given here are
currently regarded as being the best, but they may be changed when

better information becomes available.
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Table 6.2. Stations used in least-squares determination
of the seven parameter transformations.
(i.e. solutions from program STC)

NAD 27 —S5SL-6

7062 : SANDIE 7109 : QUILAS
7069 : RAMLAS 7110 : MONLRAS
7082 : BEARLK 7112 : PLALAS
7086 : FTOAVS 7114 : OVRLAS
7091 : HAYLAS 7115 : GOLLAS
7105 : GSF105 7921 : HOPLAS

GEIM 9 — SL-6

1038 : 10RORL 7907 : ARELAS
7063 : STALAS 7921 : HOPLAS
7067 : BOILAL 7929 : NATLAS
7068 : GRKLAS 9012 : IMAUIO

GSFC-73 — SL-6

9001 : 10RGAN 9007 : 1QUIPA
9002 : 10LFAN 9009 : 1CURAC
9004 : 1SPAIN 9011 : 1VILDO
9005 : 1TOKYO 9012 : 1IMAUIO
9006 : INARTAHL 9021 : HOPKIN
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6.4.1 NAD 27 to SL-6 Transformation

The NAD 27 to SL-6 transformation parameters were determined from
12 stations distributed over the United States as shown in Figure 6.1.
These parameters were then used to transform NAD 27 optical and Doppler
tracking station coordinates into SL-6. The NAD 27 coordinates were
used since the terrestrial coordinates are considered more accurate than
coordinates determined from camera and Doppler solutions made in
previous years. Small rotations for longitude definition and zero mean
pole definition were applied to these stations to complete the trans-

formation into TCS.

6.4.2 GEM-9 to SL-6 Transformation

The GEM-9 to SL-6 transformation parameters were determined from 8
stations distributed around the globe. These parameters were then used
to transform tracking stations located around the globe with the excep-
tion of stations in Europe. The European stations are discussed in the
next paragraph. The GEM-9 to SL-6 transformation was used since the
local datum coordinates for most of these stations are not very well
known or are of dubious origin. Again, the small rotations for zero
mean pole and longitude definition were applied to bring these
coordinates into the TCS.

6.4.3 GSFC-73 to GEM-9 Transformation

The GSFC-73 solution was used because a European Datum to SL-6
transformation could not be determined due to insufficiencies in the
terrestrial data and because the European GSFC-73 dynamically derived
positions are considered more reliable than the GEM-9 dynamically
derived positions. It may appear rather odd that the transformation
relates GSFC-73 to GEM-9 rather than to SL-6. This was done since a
direct GSFC-73 to SL-6 transformation could not be established due to
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insufficient data. To get around this problem, a two-step procedure was
used. The transformation parameters relating GSFC-73 to GEM-9 were
determined from 10 stations distributed globally. The European stations
were then transformed into GEM-9 via these parameters, followed by the
GEM-9 to SL-6 transformation mentioned in the previous paragraph. Small
rotations again were applied, accounting for the zero mean pole and our

new longitude definition, to bring these stations into the TCS.

6.4.4 Other Transformations

After some analysis, it became apparent that a few of the stations
positions were causing larger than anticipated residuals. The network
of S-band tracking stations was one such case. The S-band tracking
stations (used to track SEASAT) were transformed into SL-6 by
determining the GEM-9 to SL-6 parameters found exclusively from S-band
position data known in both systems. Six S-band stations were used to
determine these parameters. Thirteen other S-band stations were then
transformed via these parameters into the SL-6 system. Likewise,
similar rotations as mentioned above were employed to these sites to
bring them into the TCS.

6.5 DISCUSSION

6.5.1 Transformation Parameters and Accuracies

The determination of the seven parameters in the transformations
were performed in a least-squares based program known as STC (STation
Comparison). The transformation parameters relating the coordinate

systems described in the previous sections as computed by STC are given
in Table 6.3.
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Table 6.3. Transformation Parameters

parameter NAD - SL-6 GEM9 - SL-6 GSFC73 - GEM9
AX (m)| -31.4805 -0.9451 2.5460
AY (m)| 172.5176 -1.7602 2.6820
AZ(m)| 182.7296 0.8776 -0.2535
AL 1.6015E-6 | -3.5305E-7 9.0237E-8
w (7) -0.77841 0.32384 -0.00924
v () -0.01160 -0.08520 -0.02139
€ () -0.31494 0.04528 -0.04434

Table 6.4. Quality of the transformations
(RMS about the mean, see text)

parameter | NAD - SL-6 GEM9 - SL-6 | GSFC73 - GEM9
X (m) 3.158 1.404 4.663
Y (m) 2.422 1.133 3.014
Z (m) 2.826 0.469 3.128
o () 0.1161 0.0464 0.1615
A (M) 0.1166 0.0233 0.1080
H (m) 1.784 1.537 3.158
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The translation parameters in the NAD 27 to SL-6 transformation
are large (i.e., tens and hundreds of meters) since NAD 27 is not a
center of mass system. The magnitude of the translations is consistent
with other investigations reported in Bomford (1980), p. 635 with the
exception of the AY translation component. The value we determined
for AY is 15 meters larger than that found by other investigators. The
seven parameter determination by STC is highly dependent upon the
distribution of stations. As can be noted in Figure 6.1, our determina-
tion will be stronger in the western United States. This is the case
since the LAGEOS tracking network is concentrated in the more tectoni-
cally active west coast. Although the distribution is far from optimal,
the resulting transformation has suited our needs and is of adequate

precision (to be discussed below).

The other two transformations, GEM-9 to SL-6 and GSFC-73 to
GEM-9, have smaller parameters since all three coordinate systems are
supposedly center of mass systems. However, significant differences are
present which are most likely due in part to differences in the
longitude origin of the systems. The AZ translational component is at
least an order of magnitude smaller than the equatorial plane
components, AX and AY. In the equatorial plane, the SL-6 center of mass
falls nearly half-way between the center of mass of the GEM-9 and

GSFC-T73 coordinate systems.

6.5.2 Precision of the Transformations

The precision of the transformations can be gauged from the RMS
scatter of the residuals after the transformation has been made. The
RMS scatter is given by

- o~ 172

Xo = | E (Xyp= T (BX, AY, AZ,w, ¥y €, ALY X ) _ (6.3)
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Figure 6.1. Laser Tracking Station Locations used in Determining the
Seven Parameter Transformation between NAD 27 and SL-6.
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where

> |

if are the known coordinates for tracking station i1 in the
unified coordinate system (e.g., SL-6),
Yia are the known coordinates in the a priori coordinate system
(e.g., NAD 27, GEM-9, etc.), and
T denotes the seven parameter transformation.

This actually provides a measure of how well the stations that were used
to determine the parameters of T agree when T is applied to their
a priori coordinates. The RMS quantities for the three transformations
described here are given in Table 6.4. It can be seen in Table 6.4 that
the GEM-9 to SL-6 transformation is the strongest of the three with
residuals averaging in the 1 to 1.5 meter range. The NAD 27 to SL-6
transformation is weaker with residuals in the 2.5 to 3 meter range.
Finally, the GSFC-73 to GEM-9 transformation is the weakest with 3.5 to
4 meter residuals. This latter result is not too surprising since the
GSFC-73 coordinates are based upon early camera and laser data with a
solution accuracy goal of 5 meters. As mentioned earlier, though the
uncertainties of the GSFC-73 coordinates may seem large by today's
standards, in some cases {(especially the European and other remote or
abandoned sites), the GSFC-73 coordinates are the best available. GEM-9
used much of the same data, and therefore must share in the resulting

station uncertainties.

6.5.3 Error Sources

Errors in the coordinates of the stations in the TCS can be as
large as a few meters. This is especially true for stations having

their a priori coordinates determined from an early dynamic solution.
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Stations in this category very 1likely have limited tracking histories
and will never be positioned accurately from available early tracking
observations. On the other hand, most of the laser stations coming
directly from the SL-6 solution will have their coordinates determined
to an accuracy in the sub-decimeter range: This is especially true for
stations with robust tracking histories. Stations that have come from
the GEM-9 solution have their coordinates known to an accuracy of 1 to 2
meters; again, those stations with strong tracking histories will be

better determined.

The seven parameters of the transformations are thus susceptible
to errors in the coordinates of the stations in both the a priori and
the SL-6 coordinate systems. These coordinate errors will be mapped into
the seven parameters directly. In running the STC Program, stations were
selected such that 1) good geographical distribution was maintained, and
2) all coordinates (a priori and SL-6) were well determined. The STC
Program unfortunately, uses equal weights for the stations when esti-
mating the transformation parameters. For the remaining stations to be
transformed, in addition to the transformation parameter uncertainties,
the errors of the a priori coordinates map directly into the resulting

unified coordinates.

The linear translations suffer from the fact that rotation and
scale are not considered. These errors can grow as large as three
meters when the stations involved are separated by 100 km. However,
only a small number of optical and doppler stations were transformed in

this way; all of them had statign separations of less than 3 km.

6.5.4 Distortion in the NAD 27 Datum

The STC program provides the residuals for each station's coordi-
nates after the transformation is applied. These residuals, when viewed

geographically, can illustrate the relative distortion between two
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CONTOUR INTERYAL: 1 meter

Figure 6.2. Longitude Distortion Based Upon SL-6 vs. NAD.
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CONTOUR INTERYAL: 1 meter

Figure 6.3. Latitude Distortion Based Upon SL-6 vs. NAD.
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datums. The NAD 27 is a terrestrially determined network established by
classical geodetic surveying techniques and adjusted by Gaussian least
squares. The distortions of the NAD 27 with respect to SL-6 can be
determined by utilizing the more densely distributed stations in the
western United States (Figure 6.1). The distortions in longitude and
latitude are shown as contour maps in Figures 6.2 and 6.3. Regions of
negative distortion indicate areas where NAD 27's longitude or latitude
is larger than SL-6's. Leick & Van Gelder (1975) published similar maps
comparing NAD 27 to the NWLID Doppler satellite center of mass system.

Their results agree quite well with those of the present analysis.

Station positions from a variety of sources have been transformed
into a unified geocentric coordinate system (the TCS) to aid in the
creation of a preliminary gravity field model to support the TOPEX
mission. Complete lists of the stations in the TCS system are found in
Appendices 1 and 2. Appendix 1 has the currently maintained TOPEX
geodetic file which consists primarily of active laser and Doppler
sites. Appendix 2 consists of older optical sites, many of which are no
longer active. The transformations used are anticipated to yield
station coordinates with an accuracy of 2 to 5 meters in all coordinates
for the NAD 27 transformed stations, and 3 to T meters for the dynami-
cally determined coordinates transformed into the modified SL-6 system.
The stations which appeared in Table 1 are assessed to have coordinate
uncertainties in the range of a few centimeters since they have been
determined in recent laser/dynamic solutions. Error sources have been
identified and attempts have been made to eliminate, as best as
possible, their effects on the resulting transformed coordinates.
NAD 27 distortions have been estimated in a limited region and are in
good agreement with previous studies. Maintenance of the station
coordinates as a geodetic file is an ongoing project. As new solutions

and data become available, this file will be updated. Since the station
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coordinates come from a variety of sources, an associated epoch cannot
be assigned generally. It is planned that as the TCS geodetic file
improves, epoch dates can either be assigned to individual stations or
the stations will be rotated to a particular epoch using a set of plate
motion parameters. The effects of plate motion will continue to grow as

tracking histories lengthen in time.
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SECTION 7.0
FORCE MODELING

The force model used for the GEM-T1 development consists of the
conservative geopotential forces and the non-conservative solar
radiation pressure and drag forces. This section describes the specific
application of the models and provides the general basis for the details
of the modeling.

7.1 POTENTIAL EFFECTS

The geopotential consists of both a static part, which is defined
by the unperturbed mass distribution of the Earth, and a dynamic part,
commonly known as the tidal potential, which is due to the mass
deformation of the Earth caused by the gravitational forces of the Sun

and Moon. The force is computed as the gradient of the potential.

T.1.1 Mathematical Formulation of the Potentials

The standard form of the geopotential is given by:

n —

an(31n ¢) C pC0S mA+S _sin mi (7.1)

where u is the gravitational constant of the Earth (elsewhere referred
to as GM), r is the geocentric satellite distance, ¢ is the satellite
geocentric latitude, A is the satellite east longitude, Fﬁm(sin ¢) are
the associated Legendre functions of the first kind, and Cnm and Snm are

the geopotential coefficients. The use of the normalized harmonics is
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indicated by the overbar. The relationship between the normalized and

unnormalized functions is

T(n~m)! (28+1) (2-8 ) 172

om
nm (n+m)! Pam (7.2)

ol
!

where Gom is the Kronecker delta, which equals 1 when m is 0 and

otherwise equals O,

The tidal potential adopted consists of the body tide potential
and the ocean tide potential. The body tide potential is modeled based
on the frequency dependent elastic response of the Wahr Earth model,
The ocean tide model is based upon the spherical harmonic expansion of a
simple surface density layer model. Both of these potentials may be
expressed in the standard form given above, where the coefficients vary
with time. However, tidal potentials are more conventionally expressed’
in terms of amplitude and phase, where the amplitudes are related to
either cm of tide height or to the contribution to the elasticity

parameter k2.

The body tide potential is given by

. B
P2m(31n ¢) cos (of + 62,f) (7.3)

and the ocean tide potential is similarly expressed as

2+1

+ >
qu(sin¢) cos (Olq,f+ elq,f) (7.4)
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where

la R ]

indicates summation over all tidal constituents f.

is a body tide constant associated with constituent f.

is the angular argument associated with constituent f
of the body tide.

are the Love number amplitude and phase respectively
which describe the body response of the Earth.

is the order associated with f and is 0 for the long
period tides, 1 for the diurnal tides, and 2 for the

semi-diurnal tides.

is an ocean tide constant associated with degree R.

is the angular argument associated with the (2,q,%)
subharmonic of the ocean tide generated by constituent

f.

are the amplitude and phase of the (%,q,t+) subhar-

monic of the ocean tide generated by constituent f.

Each constituent f is associated with an unique frequency. It
should be noted that if

Ko, ¢

S5, ¢

for all f,

(7.5)

then the total body tide potential may be simply computed in

the time domain using the potential

151



2
e

a

"a _€
r

3 v — -1 (7-6)

Ko
=15
d r

3
d

where Fd is the geocentric vector to the Sun or Moon and By is the
gravitational constant of the Sun or Mocon. For a frequency dependent
model for the Love numbers, most of the variations are concentrated in a
single band (the diurnal). It is computationally efficient to use a
simple background model and correct terms for which the Love numbers
differ significantly from the background reference values. This

procedure was adopted.

The tidal constituent f is uniquely identified by the Doodson
argument number. Table 7.1 identifies the principal tidal frequencies
and gives the (approximate) matching Darwinian symbol for each corres-
ponding Doodson number. The frequencies are based upon the ecliptic
element rates. Note that these same frequencies are also present in the

ocean tide effects.

7.1.2 The a priori Static Geopotential Models

The a priori models adopted for the GEM-T1 development are:

GEM-L2' for LAGEOS
PGS-1331*' for Starlette
PGS-S4! for SEASAT

GEM-10B' for all other satellites

These gravity models were analytically corrected to 2zero mean pole,
modern ellipsoid parameters (a =6378137Tm, £~ 1-298. 257), and the adopted
definition of the new speed of light (c=2. 99792458x108m/%e0)
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Darwinian
Symbol

TABLE 7.1

Doodson's Period
Argument (hr)
Number

255.555 12.42
273.555 12.00
245,655 12.66
275.555 11.97
265.U455 12.19
165.555 23.93
145,555 25.82
163.555 24,07
075.555 13.66d
065.455 27.55d
057.555 188.62d
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Description

Principal lunar semidiurnal
Principal solar semidurnal
Larger lunar elliptic
semidiurnal
Lunar/Solar semidiurnal
Smaller lunar elliptic

Lunar/Solar diurnal

Principal lunar diurnal
Principal solar diurnal
Lunar fortnightly
Lunar monthly

Solar semi-annual



7.1.3 The a priori Body Tide Model

Table 7.2 gives the Love numbers computed by Wahr (1979), based

upon the Earth Model 1066A of Gilbert & Dziewonski (1975). Note that
Gz,f is zero for this elastic model, i.e., the model is free of
dissipation. These Love numbers fully characterize the response of the

1066A Earth to the non-loading tide generating potential.

7.1.4 A priori Ocean Tides Models

The response of the oceans to the tide generating potential is a

set of constituent tide heights
£-(P) = A (P) cos (wp - e (P)) (7.7

where Wp is the angular argument associated with constituent f and Af(P)
and wf(P) are the tidal amplitude and phase respectively at point P.
The amplitudes and phases are computed from numerical solutions of the
Laplace Tide Equations. Such solutions involve a high computational
purden and presently such models are available for only a limited number

of tidal constituents,

The tidal heights are expanded into spherical harmonics by:

_ + . + +
Ep(P) = . g . Cha.t qu(51n $) cos (qu’fi ezq'f) (7.8)

Given the global tidal heights, the coefficients Ciq p and phases ei £
’ q,
necessary for the evaluation of the potential can be computed.

154




TABLE 7.2

WAHR LOVE NUMBERS FOR 107T7A

Band

Long Period

Diurnal

Semi-Diurnal

Tidal Line

All

145555 (01)
163555 (P1)
165545
165555 (K1)
165565
166554 (PSI)

All
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2,f

.299

.298
.287
.259
.256
.253
U466

.302



Observed tide models for 11 major tide constituents in the
semidiurnal, diurnal, and long period bands have been computed on a
19 x 1° global grid by E.W. Schwiderski using an integration scheme
which incorporates the available deep sea tide gauge data. These tidal
constituents should account for over 90% of the total ocean tide ampli-
tude at any point. However, no models are available for the minor tide
constituents, which although small in amplitude, can have significant

perturbing effects on a satellite's orbit.

Table 7.3 shows the estimated radial perturbation amplitude due
to the major ocean tide constituents on the proposed TOPEX orbit and on
the GEOS-3 orbit. This analysis was based upon a Kaula-type first order
linear orbit perturbation theory. More than half of the constituents
have effects which exceed 1 decimeter radially. These terms must be
modeled. It is probable that the associated minor tides for some of
these also must be modeled if the minor tide response is proportional to

the tide raising potential of the major tide.

Figure 7.1 presents a qualitative analysis of 53 satellites,
whose tracking data might contribute to an improved geopotential model.
A crude estimate of the ocean tide effect is about 10% of the body
tide. The 53 satellite orbits were evaluated for their nominal ocean
tide perturbations at 230 tidal frequencies. These 53 orbits represent
a variety of orbital inclinations and altitudes, and all have reasonable
tracking data histories. Figure 7.1 shows the number of satellites
having effects over .001 arcsec in the inclination as a function of
tidal frequency. Satellites were also included if the principal third
degree terms from an ocean tide decomposition produced a perturbation in
the orbit eccentricity greater than 1 ppm. In this analysis, the
amplitude of the ocean tide coefficients was assumed to Dbe 1 cm. Note
that the criterion of 1 ppm perturbation in the eccentricity is
equivalent to the criterion of a .001 arcsec perturbation in the

ineclination.
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This analysis revealed more than 150 possibly significant tidal
constituents. A substantial number of these are associated, not with the
main tidal frequencies, but with the nearby sideband frequencies. The
periodicities of the satellite orbital motion are convolved with those
of the tides as seen on the Earth to produce the frequencies seen at
the satellite. Some of the sideband terms are closer to exciting orbital
resonance than the dominant tidal terms due to their commensurability
with orbital frequencies. However, only the low degree and order terms
in the spherical harmonic expansion of the tides can have significant
potential effects on the satellites because of the attenuation with
distance of these effects on orbiting objects. Our fundamental concern
is thus with the long wavele

The most complete set of a priori ocean tides available repre-
sents only the main tidal frequencies. A procedure was developed in
order to provide estimates and their errors for the sideband terms from
existing oceanographic models in order to both perform a quantitative
error analysis and to better assess the recoverability of the low degree
and order spherical harmonic tidal terms in a true simultaneous solution
with the terms of the geopotential. The complete ocean tidal model

which was used as a priori is given in Appendix 3.

The procedure is based upon the concept of admittance, as
detailed below. Models were derived for some 36 minor tides, which are
on a one degree global grid matching that of Schwiderski. These models
have also been converted to spherical harmonics for the subsequent
satellite studies. The use of the admittance was motivated by the study
of Munk and Cartwright (1977).

The tide raising potential at time t and at latitude ¢ and
longitude A is given by

T(¢,A,t) =} Teo,1,t) = 1gn
B

(sin ¢)cos[o t+yx . +mrA]  (7.9)
8 B B

B P2m
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where B designates the particular constituent of frequency g and
equilibrium tide amplitude Ng+ Xg is the phase constant associated with
the ephemerides of the Sun or Moon for the epoch of January 0,1900. The
gravitational acceleration at the Earth's surface is represented by g.
Pom is the associated Legendre function of degree 2 and order m. The
terms for degree greater than 2 are of negligible effect (e.g. Munk and

Cartwright ,1977). Note that in specifying B, m is also specified.

The response to this perturbing potential is the set of

constituent tide heights

EB(¢,A.t) = AB(¢,A) cos[oB t + Xg ~ ¢8(¢,A)] (7.10)

where AB(¢,A) and w8(¢,k) are the amplitude and phase respectively.
The admittance function relating the complex exponential signal
'’ corresponding to the input signal TI', with the complex output

] 8
signal gé for the constituent B is given by

A =j(y, +m))
- BP e P (7.11)
g 2m

zB(¢,A) =

These admittances are readily computed from the known tides. If, on the
other hand, the admittance is known for constituent 8, then one may
compute

Eg = Retgel = Re[zBrB] (7.12)

Thus, if reasonable admittance function descriptions could be obtained

from the known tides, the unknown tides could be estimated.

160




The major tide constituent data, the Schwiderski models (1980a,
1980b), were obtained in the form of a standard NSWC GOTD-1981 tape,
i.e. tide values for AB and wB on a one degree global grid. The rms
values of these constituents, computed from their spherical harmonic
representation, are tabulated in Table T.4. Also shown are NSWC's
estimated errors for the semidiurnal and diurnal tides and each
8 NSWC did not provide us

with estimated errors for the long period tides. Nominal errors for the

constituent's equilibrium tide amplitude, n

long period band were estimated as being proportionately as well
determined relative to the equilibrium tide as My, i.e., 12.8%. The
model errors are available only in an overall rms sense ~ the geographic
distribution of the estimated errors is not available. Note that there
are only four semidiurnal, four diurnal, and three long period tides

available.

From the outset, we chose to do separate analyses for the
semidiurnal, diurnal, and long period bands so that the range of
frequency being represented was more limited. The procedure assumes
that the tidal admittance is locally a linear function of frequency,
i.e. within each band at each particular ¢,X point on the Earth's
surface. This 1linearity assumption was adopted because global
nonlinearities are anticipated to be small, and also, for the practical
reason that there are only at best four points to interpolate over (or
extrapolate from) in each band. The procedure is illustrated in
Figure 7.2. Proportionally, there is a much greater span of frequency
variation in the long period band than in the diurnal or semidiurnal
band. However, only three long period tides are available, so this
frequency band cannot be further segmented to reduce the range of
interpolation. Also, the NSWC Mm and Mf tides are smaller by a factor
of 3 or U4 compared to their equilibrium values. This suggests a conflict
with the assumption of linearity of the admittances across the 1long
period tidal band.
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TABLE 7.4
NSWC TIDE MODELS

Cumulative RMS Tide Values Summed to Degree 30 and their RMS Errors

NSWC Model

Equilibrium Tide Errors (cm & deg)*

Tide Constituent Amplitude ng (cm) NSWC RMS (cm)  Amplitude Phase
My 24,2 30.0 3.11 3.72
S, 11.3 12,2 1.28 4.2
My 4,6 6.5 0.51 4,12
K, 3.1 3.4 0.23 3.13
Ky 14.1 10.9 0.94 9.95
04 10.1 7.9 0.57 3.Ué
P1 4,7 3.5 0.20 4,14
Q 1.9 1.7 0.08 2.4
Me 4,2 1.0 -- --
Mn 2.2 0.8 -- --
S83a 1.9 1.6 -- --

*From Table of Comparison of Empirical and Modeled Ocean Tides at 195
Island and Deep-Sea Stations (used and not used), E.W. Schwiderski,

private communications.
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The residuals from the fitting process reflect the disagreement
of the NSWC tides with this hypothesis. The fitting process is a least
squares linear regression weighting each A_cos ¥ or A_ sin ws

8 8 8
according to the specified NSWC estimated errors:

weight = (8a° + A§6m2)-1 (7.13)

where §a represents the error in AB(¢,A) and 8¢y represents the error
in w8(¢,x). For the long period tides, we estimated that the error was
proportionally the same as for M,, which is 12.8% of the equilibrium
tide amplitude. Because we are dealing with tide models as data, our
residuals should be dominated by local nonlinearities in areas such as
the Patagonian Shelf and the more global nonlinearities due to the
Earth's diurnal resonance. The differential response to solar radiation
will be present. These residuals will also reflect nonlinearities in
the physical modeling of Schwiderski (1980a, 1980b) and any systematic
data errors specific to a particular tide. Clearly, if a nonlinear
hypothesis were to be adopted to replace the linear arc based on the
admittance concept, a physically justifiable nonlinear model would be

essential.

The global amplitudes and phases for the M, tide as computed by
Schwiderski and our numerical model are compared in Figures 7.3 and 7.4,
The models are qualitatively the same, which indicates that, in a global
sense, we have not seriously mismodeled this important tide. This is
true for all of the semidiurnal and diurnal tides. The upper part of
Figure 7.5 shows the global amplitude of the residuals in My (vector
magnitude). As expected, local areas such as the Patagonian Shelf
dominate the residuals. There are also significant differences in the
general area of the Marquesas Islands and the western Atlantic. The
lower part of Figure 7.5 shows the percentage relative error, indicating
that the error is typically less than 20%. The regions of high relative

error, greater than 20%, generally correspond to amphidrome locations
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where the amplitude variability is small. This example is typical of
the results we obtained for all of the tides in the diurnal and

semidiurnal bands.

Similar comparisons for the long period tides show large regions
of high relative error, over 100%, which indicates that our approach has
difficulties with the long period tidal band. These difficulties were
not unexpected given the substantial frequency range within this band.
However, as there are only three major tides available in this band,

there is no practical alternative.

Table 7.5 presents the global statistical summary for each of the
NSWC tides. The rms of fit in cm shown was computed from the rms admit-
tance. With the exception of 01 and M2, the rms global fit in each of
the semidiurnal and diurnal bands shows that the linear model disagrees
Wwith the NSWC input by approximately the estimated error in NSWC. 01
and M, disagree by a factor of two in this quantity. M,, the worst
case, has a weighted rms disagreement of 7 cm out of a total 30 cm, yet
still has an error in power of less than 5%. The fits in the long
period band confirm the conclusion that these tides are not adequately
modeled with this procedure, in that the weighted rms residual amplitude
is on the order of the entire NSWC rms tide amplitude. However, the
weighted rms residual amplitude is only twice our 12.8% of the
equilibrium tide amplitude. As can be seen in Table 7.4, the NSWC Mm
and Mf tide amplitudes are quite different from the equilibrium tide

amplitudes.

The standard deviations of unit weight given in Table 7.5
provide the factors by which the NSWC rms amplitude errors need to be
adjusted in order to map the weighted residuals into the unit normal
distribution. The semidiurnal and diurnal bands are near unity, but
the long period band is off by a factor of 2.5. Thus the linear model

is not inconsistent with the semidiurnal and diurnal data, but it is
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inconsistent for the long period tides assuming the projected error
estimates for these tides are correct. However, rms fits are still less
than 40% of the equilibrium amplitude for these long period tides, and

are only about twice the estimated nominal error in these tides.

In addition to computing the unknown tides, we have also computed
the associated errors of these tides based on errors which have been
corrected to attain unit variance. The error at a point is simply
obtained by propagating the covariance matrix associated with each point

to the desired frequency.

7.2  ATMOSPHERIC DRAG AND SOLAR RADIATION PRESSURE

The non-conservative forces which are of concern in modeling the
evolution of the spacecraft orbit are the forces of atmospheric drag and

solar radiation pressure.

7.2.1 Mathematical Formulation of the Models

In GEODYN, the acceleration due to atmospheric drag is

| op V. V. (7.14)

|
O
]

[
nj—
e

©
Xi»

where Cp 1is the satellite drag coefficient, A is the cross-sectional
area of the satellite, M is the mass of the satellite, °p is the density
of the atmosphere, v, is the velocity vector of the satellite relative
to the atmosphere and V. is its modulus. The atmospere model is the

1971 Jacchia; the atmosphere is presumed to rotate with the Earth,
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The acceleration due to solar radiation pressure is given by

— —A- PS -~
AR = -y CR ‘_b_'l._ PS R—2 I"S (7.15)
S

where v is the eclipse factor accounting for shadowing of the satellite
by the body of the Earth, CR is the satellite radiation pressure coef-
ficient, A and M are as before, Ps is the solar radiation pressure in
the vicinity of the Earth, RS is the distance from the satellite to the

sun in AU, and ;s is the geocentric unit vector pointing toward the Sun.

Both of these models assume the satellite is a sphere. However,
the adjustment of the drag and/or radiation pressure coefficient
accommodates much of the model error associated with the spacecraft
shape. Errors in the density model are similarly accommodated, but,
because the atmosphere varies with time, multiple drag coefficients are
often required to accomodate the observed drag variations. GEODYN has
the capability to model either the drag or solar pressure effects using
piecewise discontinuous coefficients over specified time intervals, and,

within each time interval, the coefficient can vary according to
C=0Cy+C (t-ty) (7.16)

For the present efforts, we are only using this capability with the drag
modeling.

7.2.2 Atmospheric Drag Model Testing

Almost all of the satellites used in our analyses are signifi-
cantly perturbed by drag. Given that there are model errors in both the

shape of the spacecraft and in the atmospheric density model, the major
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question to be answered was how best to parameterize the drag so as to
minimize the atmospheric drag error within the orbital solutions. The

parameterization options investigated were:
(a) a constant scale parameter, Cp, adjusted once in the arc
(b) a Cp and Cp adjusted over the length of the arc, or

(c) solution for several Cp values over specified time intervals,

(i.e. once per day) over the arc length.

This investigation was most conveniently performed using the GEODYN I
software, as it has variable area modeling capabilities and a selection
of atmospheric density models -- specifically both the 65 and 71 Jacchia

models (Jacchia, 1965, 1971). The BE-C satellite was used as the basis
for this investigation.

The BE-C orbit has received a good deal of attention from its
contributions to the San Andreas Fault Experiment and the analysis of
laser ranging to determine intersite station distances within California
(see for example Smith et al., 1977). Of the set of laser satellites
which were used in the creation of GEM-T1, BE-C presented one of the
most difficult atmospheric drag modeling problems. It was magnetically
stabilized, which caused its in-plane cross-sectional area to vary
significantly over each orbital revolution. BE-C also has a somewhat
eccentric orbit (e=0.0257) with a perigee height of 940Okm. A variable
cross-section surface area model for BE-C was developed by Safren,
1975. Given that BE-C also has a reasonably strong set of laser ranging
data, tests of drag modeling error could be designed using orbit
intercomparisons and analysis of along track errors sensed at the
observing sites using the real tracking data and resulting orbits

directly.
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Several five-day arcs were selected. These arcs were chosen so
as to represent the full spectrum of tracking available on BE-C. For
example, a well tracked arc (epoch of 790417) having a total of 78
passes was used. On the other hand a somewhat weaker arc having only 30
passes (epoch of 800201) was also selected. Table 7.6 shows the
geographic distribution of the data found in each of these ares.

7.2.2.1 Orbit Comparison Results

The representation and solution of drag parameters was tested

preliminarily through a series of trajectory comparisons. Each of the

10

was tried tw

o] ~
Ve LLRLLLIITY a v wis =] i< wo

approaches ((a) through (c¢) outlined above where (c)
ways-with a coefficient adjusted every 12hrs. and once per day) was
utilized to converge each of the five day ares. Both the Jacchia 1965
and 1971 models were employed. All of these resulting trajectories were
intercompared every minute over their respective 5 day intervals as
shown in Table 7.6.

Table 7.6 summarizes the RMS along track trajectory component
differences for each of these comparisons as shown in Figure 7.7. In
all cases, drag predominantly perturbed the along track component of
the orbit, with radial and cross track RMS differences always being
less than 0.6m. The data sets and non-drag force models were the same
in all orbits with the same epoch. The differences in the trajectories
are due to drag modeling differences which can be construed as an
estimate of drag model error. The effects of this drag error are to be
minimized through the solution of drag scaling parameters. Therefore,
where different density models show the greatest agreement, this
minimization has been effective. There is also some concern tha* over-
parameterization of the drag effects could result in an aliasing »f drag
and long period gravity signals. Therefore, it was desirable that the
number of degrees of freedom devoted to drag scale parameters be nheld to

a minimum unless strong evidence was present indicating a need for
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NASA G-65- 6565

Figure 7.6. BE-C.
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Table 7 6

BE-C DRAG MODELING ORBITAL COMPARISONS

TEST ARCS: 5 DAY ARC LENGTHS

790417 800201
No. of passes:
W. USA 51 24
E. USA 24 1
S. Am. 3 0
Hawaii 0 5
TOTAL 78 30
T90417 ORBIT COMPARISONS: RMS ALONG TRACK DIFFERENCES (m)
JT71 CD+CDOT
J71 CD/DAY
J71 CD/DAY 3.0
J71 CD/12H
J71 CD/12H 3.4 0.8
J65 CD+CDOT
J65 CD+CDOT 1.6 4.3 4.7
J65 CD/DAY
J65 CD/DAY 3.0 1.2 1.2 4.1
J65 CD/12H 3.6 1.9 1.4 4.6 1.1
800201: ORBIT COMPARISONS: RMS ALONG TRACK DIFFERENCES (m)
J71 CD+CDOT
JT1 CD/DAY
J71 CD/DAY 9.3
J7t CD/12H
J71 CD/12H 9.2 1.5
J65 CD+CDOT
J65 CD+CDOT 1.4 8.7 8.5
J65 CD/DAY
J65 CD/DAY 11.5 2.7 2.9 10.7
J65 CD/12H 11.2 3.1 2.5 10. 4 1.5

RMS Cross Track and Radial Differences are all less than 0.6 m
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additional drag parameters. The drag/day and drag/12hr representations
clearly had the best overall performance for reducing drag error and
producing the most similiar orbits. This representation yielded results
which on the arcs with the strongest tracking showed agreement of better
than 2m RMS along track between trajectories calculated using different
density models. Even for the weaker second arc, results no worse than
3.1 m BMS were obtained. Since there was no clear improvement to be
seen in the CD/12hr drag parameterization, the CD/day approach was

adopted as the most desirable on the basis of these tests.

These orbits were tested invoking the variable cross-sectional
area model and compared with trajectories calculated modeling a constant
satellite surface area. No significant improvement was found when the
variable area model was utilized. As the variable area modeling was not
available in GEODYN II, the data analysis proceeded using constant

satellite cross-sectional area values.

7.2.2.2 Evaluation of Apparent Timing Errors

This second approach is based upon analysis of the apparent
timing errors seen in each pass of tracking data, As most of the
satellite's motion is in its orbital plane, an error in the calculated
orbit causes the acquisition time at a station to appear either early or
late with respect to the actual observations--these are the so-called
apparent "timing errors" which are analyzed. Figure 7.8 presents the
apparent timing errors seen in a 5 day arc (epoch 811012) when different

parameterizations are employed for the minimization of drag errors.

The 1intercomparison of the spectra of the timing errors
associated with the various types of drag parameterization provided the
basis for the evaluation. It is assumed that, if one could completely

eliminate drag model errors through some parameterization, then the
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resulting spectra would be unaffected by the density model used.
Conversely, if the same representation of drag yielded very different
timing error spectra when different density models were used, then it is
expected that there would be a strong residual drag related aliasing
signal corrupting the computed orbit. Figure 7.9 compares the timing
error spectra using different density models for each of the drag
parameterizations described above. The difference in the spectra when
drag is represented by a CD and a éD strongly indicates that there is
considerable residual drag error left within each of the calculated
trajectories. This large error is greatly reduced when a CD/day or
CD/12hr modeling is used. Other arcs were tested and gave the same
strong evidence that a CD/day coefficient recovery was the most

desirable representation requiring a limited set of solution parameters.

T7.2.2.3 Conclusions

The BE-C atmospheric drag investigation led to the adoption of the
CD/day parameterization for the orbital data reductions and normal
equation generations for the GEM-T1 solution. This representation was
used on all near-Earth laser, flashing lamp optical and Doppler satel-
lites. It was not possible to use this approach for the passive optical
satellites whose data were too sparse to support daily drag parameter
recoveries. LAGEOS and STARLETTE, given their extemely high density and
insensitivity to atmospheric drag, required a solution of a single drag
parameter for each orbital arc. Table 7.7 summarizes the treatment of
the orbital specific parameters by satellite in the analysis and normal

equation generation phases of the GEM-T! investigation.
Further investigations of this nature are planned for future

iterations of the gravitational field models. Tests involving the

atmospheric model of Barlier (1978) are to be included.
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Table 7.7

SATELLITE ARC
DEPENDENT PARAMETERS USED IN
THE DATA ANALYSIS & NORMAL
EQUATION GENERATION

SATELLITE ARCLENGTH  DRAG  SOL RAD. ACCEL
LAGEOS 30° - .., a3
STARLETTE 5° Co C, —
OTHER LASER 5° C,/DAY C_,C, —
DOPPLER 6°,7" C,/DAY C,,C, —
FLASHING LAMP 7° C,/DAY ¢, ,C, —
PASSIVE OPTICAL 7° Co,Co c,.C, —

*We have written poartial derivatives permitting solution for C and
a. These parameters have not yet been allowed to adjust from their
a priori value of zero.
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SECTION 8.0
SOLUTION DESIGN

The design of a comprehensive gravity field solution 1is
complicated by imperfections and incomplete knowledge in the
mathematical models used to describe the tracking observations.
Therefore, a certain degree of experimentation and testing of
preliminary models is necessary. This section describes the method of
solution adopted for GEM-T1, and relates how difficult decisions

concerning data weighting were made.

8.1 LEAST SQUARES COLLOCATION

The use of a modified least squares method was implemented in
recent GEM models (Lerch et al., 1977) to permit a meaningful, stahle
solution of the satellite field to high degree and order. With the
exception of GEM-10B and 10C, all of the post-GEM-7 solutions used this
modified form of least squares, which includes a priori information on
the power of the field. A general mathematical description of this
method follows, with specific details relating to the development of
GEM-T1 shown in the next subsection 8.2.

Conventional 1least squares simply minimizes the observation
residuals (noise). However, high correlation between certain high
degree and order coefficients in gravity solutions is a persistent
problem when large fields are estimated. If uncontrolled, this results
in excessively large values for the adjusted coefficients in the
conventional least squares solution. By applying constraints in the
form of a priori weights for the unknowns we essentially minimize both
the signal (e.g., the size of the harmonic coefficients) and the noise
(observation residuals) within the solution, thereby preventing an

unreasonably powerful gravity solution.

PRECEDING PAGE BLA .0 00 0 b
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The principle of least squares collocation is to minimize (see

Moritz, 1980, Egq. 21.38):

Q= sT K—1 g + nT D-1 n (8.1)

with respect to the unknowns y, where

y - complete set of solution parameters for the

geopotential, stations, earth orientation, tides and the

orbit
n - adjusted satellite observation residuals
D - diagonal matrix for satellite observation residuals

whose diagonal elements are the variances of the

observations

S - signal, which in our application consists of the
harmonic (potential) coefficients representing a subset

of y, with an expected value of zero

K - diagonal matrix, where the diagonal elements are the
degree variances per coefficient (see Moritz (ibid) Egs.
21.23 and 21.52) of the potential.

In principle, there are infinitely many harmonics in the spectrum
of the gravitational field, so K would be an infinite matrix. However,
at satellite altitude, only a finite number of (lower degree) harmonics
perturb orbits to the extent that these perturbations can be observed
and separated from the measurement noise. Therefore, for space
applications, it is reasonable to make the approximation of assuming
that the expansion of the field is finite. This leads to a finite

matrix K, which, as is shown, can readily be incorporated into the
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adjustment. This is accomplished by adding K1 to the usual normal
matrix of Bayesian least squares created by GEODYN, which gives the
desired normal matrix for minimizing (8.1). Further consideration on
the wisdom of using this type of approximation can be found in Schwarz
(1976, 1978) and Moritz (ibid) Chapter 21.

Let s represent the subset of y corresponding to the potential
coefficients and x the subset of the other parameters. The y can be
partitioned as:

y = . (8.2)

Using the linear terms in the Taylor's series expansion of the measured

variable (data) d and calling,

2 = d (observed) - d (computed),
one gets
(where A and B are matrices of
2 = Ax + Bs + n partial derivatives; this is (8.3)

Eq. (16.1) in Moritz (ibid)).

then minimizing Q in (8.1) above gives the normal equations
A'D 'A A'D B X A" D L
= (8.4)

8Tp"'a BT Bk s 8T p71 ¢

which are the equations formed and solved with GEODYN and SOLVE, when
the elements of K"1 are added to the main diagonals of the submatrix
BT0""B and the a priori values of s are chosen as zero. Moritz (ibid)
employs a different formulation of the normal equations to arrive at

the expressions needed for specific applications of 1least squares
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collocation. We wish to show that equations (8.4) above are equivalent
to those special cases of Moritz's equations that he and others have
derived for satellite applications. For this purpose we may write the

second matrix row equation of (8.4) as follows:

1 1,1 T 1

s= "B+ kH" & p g - BT 77 Ax) (8.5)

and by substituting into this equation the matrix identity

(87p 1B + k1) ! BT p - k BY(BkBT+ D)~ (8.6)
it follows that

s = KBY(BK BT+ D)™' (& - Ax) (8.7)
with

X = [AT(BK BT+ D)_1A] AT(BKBT+ D)-12.

In Moritz ((ibid), Chapter 16), starting from (Eq. 16.1), which is
the equivalent of (Eq. 8.3) above, he derives (Eq. 16.37):

s = Cst C -1(2 - AX) where,in Moritz's notation,

- (BkBT+ D).
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Hence, in equation (8.7), (BK BT + D) represents Moritz's autocovariance
matrix E, and KBT is the cross-covariance matrix Cst’ for a field with a

"finite" harmonic expansion.

8.2 STRATEGY FOR DATA WEIGHTING AND FIELD CALIBRATION

As described in the previous section, the solution for high degree
gravity coefficients is made reliable through the introduction of least
squares collocation. For simplicity, and to permit a more thorough
discussion of data weighting, let (8.1) be rewritten (see also Moritz
(ibid), Chapter 28) as:

=2 =2 2
C + S r,
Q-=-F7 2.m2 2o, ey oy 1}23 (8.8)
L,m 02 t obs ot

where the calibration factors f and f compensate for errors in the

nominal oi and oi, as explained in what follows:

The values of the degree variances per coefficient oi are based
on previous studies (Kaula, 1966), which show that they follow the
general approximate rule:

5

g, =10

2
. /% (8.9)

(This means the power spectrum for the signal is referenced here
to the ellipsoid instead of a more advanced geoidal model such as that
found in contemporary gravity models. The signal matrix K-1 corresponds
to the full power of the gravity field and not some correction to an
existent model. In this way, our solution is independent of the

coefficient values from earlier gravity models.)
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Expression (8.9) has been obtained from the analysis of early
sets of surface gravimetry and is known as "Kaula's rule" (1966). 1In
(8.8), r; is the ith opbservation tracking residual from the g th

homogeneous data subset (e.g. laser ranging on LAGEOS). The weight oi
given to these observations, is constant for all data in the tth subset*
and largely reflects the accuracy of such data as reflected by the

residuals seen in the solution.

Two factors, f and f are introduced to scale the two terms in
(8.1) relative to each other. The T parameter, however, is not a free

scaling parameter, for if
f = 2 (8.10)

is chosen, it improves Kaula's rule (8.9) so that the signal matrix
better reflects the observed power found in contemporary gravity
modeling studies (Wagner and Colombo, 1979; Lerch et al., 1979). The f
parameter. plays an equally important role. The use of data noise alone
as a weighting factor in the solution causes the formal estimate of
error to be optimistic due to the neglect of unmodeled effects other
than noise as solution contaminants. Therefore, f is introduced to
scale the least squares normal equations so that the resulting solution
has more realistic error estimates, as shown by calibrations using
independent data sources (see Section 10). The accuracy of the solution
represented by (8.4) is also improved which is most important. In 8.4
p~1 is scaled by f and K_1 by f. Iteration on the solution weighting
factors f and f is generally required to converge on a near optimal

answer.

¥ with an occasional variation for a certain station as described in
Section 5.
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The GEM-9 and GEM-L2 solutions were based upon the size of the
coefficients and the scaling of the standard errors in GEM-7. We used
f=2and f = 1/10 in GEM-9 and GEM-L2. Therefore, the noise only
formal errors were scaled by /10 to yield more realistic error
estimates. The accuracy assessments for both GEM-9 and GEM-L2 were
re-evaluated in Lerch et al (1985) and proved to be realistic, although
for most terms the resulting uncertainties seemed pessimistic by about
30%.

Returning to expression (8.8), both the observation residuals,

r;i, and the overall size of the gravity coefficients, C s are to

’
be simultaneously minimized. The relationship between thi’zcali’?actors,
f and ?, needs to be chosen prior to the solution, and the weighting for
specific data sets, oi, needs to be established and tested. A natural
starting point for scaling the solution is to choose values for f
and f which were found to be optimal in earlier GEM solutions and then
experimentally adjust these parameters. Each oi is nominally adopted and
improved upon based on experience with the data. The final determination
of 02

t
specific satellite's residuals due to errors in the modeling of non-

must also take into account systematic errors enlarging a

conservative forces. Objects experiencing large drag perturbations, for
example, are more likely to have larger drag modeling errors. These
data sets must be downweighted to some (to be determined) level. The

determination of all of these scaling parameters is described below.
If:
Nt is the satellite normal matrix for a given observation type on

‘o . . s . 2
a specific satellite with a priori weight wot = 1/0Ot and scaled

weight

where Wy is an additional weighting factor for Nt'
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k' is the scaled (F=2) normal signal matrix for the potential
coefficients (diagonal elements only) and is based on the observed
power seen in the previous GEM-10B satellite gravity model as
shown in (8.10):
-1 2 y 10
= = 10 .

Kl,m 1/02 28 x (8.11)
Then the combined reduced normal matrix for the gravity solution is

given by:
C=K +f )W M (8.12)

(Ordinarily, to reduce the size of the combined normal matrix, Mt is
used, and not Nt’ where Mt is the reduced satellite normal matrix after

back-substitution for the satellite specific orbital parameters.)

Ideally, wt represents the formal accuracy of the data. In
practice, this weight is adjusted to account for the general problem of
incomplete information, where there are unmodeled and correlated errors
in the observation residuals. W therefore is also used to balance the
solution, ensuring that satellite residuals with large (systematic)

unmodeled errors do not overwhelm it.

The K-1 matrix has certain important properties. First, it is
unbiased in the sense that it does not favor any single gravity model,
as the total field (above some degree and order), and not its adjust-
ment, is minimized. To take an example, suppose a given coefficient
does not contribute to the satellite signal. In the final solution, the
determined value for this coefficient will be zero with the resulting
uncertainty being 100% of its expected power. Although biased towards
zero power, this is the best collocation estimate for any coefficient if
no satellite information is present for its solution. K'1 is applied to

terms above a certain degree cutoff. In GEM-T1, this cutoff was degree
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5; K_1 has not directly been applied to the lowest degree and order
terms (i.e., the corresponding diagonal terms in K—1 are set equal to

zero),
The scaled error covariance for the coefficients is obtained as:
-1
+ ) W, Mt] (8.13)

where choosing the overall scale factor of f=1 produces errors from the
diagonal elements of C-1 which are overly optimistiec. Therefore, f is
adjusted to produce realistic error .estimates for the optimally weighted

solution.

Table 8.1 presents a list of the independent data tests used to
evaluate the scaling and data weights of the solution. Many of these
test results are described more fully in the accuracy and calibration
sections of this report. An example of the tests spanning different
solutions are shown in Table 8.2, Herein, the factor, f, and certain
data weights were varied. Differing results were obtained since ?, as
expected, was held constant. Therefore, the relative balance of the K-1
and the rest of the normal matrix has been altered. The models which

were obtained were tested here using:

o) An estimate of gravity model error for the field truncated
respectively at degrees 10, 20 and 36 obtained from
intercomparisons with global surface gravimetry (described
fully in Section 10);

o) An estimate of complete gravity model error at degree 36
obtained from comparisons with 5 x 5 degree gravity anomaly
blocks determined from SEASAT altimetry; and

o The weighted residual obtained from the models when they are
used to predict the longitude acceleration of 10 independ-
ently studied 24-hour satellites.
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Table 8.2 presents results for a small subset of the testing that the
fields undergo, and it shows clearly that experimentally varying the
data weights can significantly alter the tested performance of the
gravity model solutions. In particular, notice the degradation in field
performance which results when f is increased from .02 to .1 as was done
in the computation of PGS 3013. This is especially apparent in the test
against independent surface gravity data. (PGS 3013 is discussed further

in Section 10.2).

The values employed for W, in (8.13) are also critically
evaluated. As shown in Table 8.3, the post-solution RMS of fit of the
data using an improved geopotential model can give preliminary values

for these parameters.

In an ideal case, the potential coefficient diagonal elements of
each satellite's combined normal matrix would reflect the total sensi-
tivity this orbit had to a given gravity harmonic. This ideal case
requires complete global coverage and complete orbital information at
every point along the orbit (not the incomplete information that a
typical tracking observation, for example, a range to the satellite,
contains). The sizes of the actual diagonal elements are important when
balancing a multi-satellite solution, but the off-diagonal information
must also be considered. This is certainly the case when dealing with

real (limited) observation histories.

Information obtained through a study of the diagonal elements on
the contributions M, of the individual satellites normal matrices are
useful in determining wt. Figure 8.1 shows the RMS contribution
(percentage by degree) for each of the satellite-specific normals to the
diagonal elements of the combined normal matrix when the data are
weighted using the W, values finally adopted for GEM-T1. (The four
laser data sets from BE-C, GEQS-1, GEOS-2 and GEOS-3 are combined into
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TABLE 8.1

DATA AND CRITERIA EMPLOYED
FOR EVALUATING AND ADJUSTING
WEIGHTS IN SOLUTIONS

® SATELLITE TRACKING DATA ON SELECTED ORBITAL ARCS

® 5° x 5° SET OF SEASAT ALTIMETER DERIVED ANOMALIES

® KAULA ERROR ESTIMATE OF GRAVITY ANOMALY FOR
SATELLITE DERIVED MODEL BASED UPON A 5° x 5° SET
OF GLOBAL TERRESTIAL GRAVITY ANOMALY DATA

® SATELLITE ACCELERATIONS IN LONGITUDE FOR 24 HR.
ORBITS DERIVED BY WAGNER (private communication ) FOR TEN
SATELLITES TO TEST LOW DEGREE (R < 6) TERMS

® SEASAT ALTIMETER CROSSOVERS

® DIAGONAL TERMS OF WEIGHTED NORMAL EQUATIONS OF
EACH SATELLITE 0BS. DATA TYPE FOR RELATIVE
SENSITIVITY ANALYSIS

® PERCENT REDUCTION OF ERROR VARIANCES OF GRAVITY
COEFFICIENTS DUE TO EACH SATELLITE DATA TYPE IN
SOLUTION

e CONDITION NUMBERS OF SOLUTION PARAMETERS

® EFFECT ON SOLUTION TESTS BY REMOVAL OF SATELLITE
DATA TYPES FROM SOLUTION
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Table 8.3

RELATIVE WEIGHT ESTIMATES
TEST CASE

RMS OF SATELLITE OBSERVATION RESIDUALS
FROM TEST FIELD (PGS-T2 TYPE)

w* = Oc/RMS;

TYPE j APRIORI

(LASER DATA) O oj RMS, W k¥
LAGEOS Im Am 100
STARLETTE ] 2 25
BE-C 1 5 4
GEOS-1 1 7 2
GEOS-2 1 8 1.6
GEOS-3 ] 7 2
DOPPLER

OSCAR 1 ecm/sec 1.2 0.7
SEASAT 1 6 2.8

1
* W, = w, /0,2, = /RHS;2 where 0,2, is the a priori value in the
normal equations N,.

*¥* Because of the relative amounts of data quantity and other factors,
further adjustment is considered for relative weighting.
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one matrix labeled "4-LASER-SATS" in Figure 8.1). The diagonal elements
per se tell an incomplete story. STARLETTE seems to contribute a
disproportionately large amount of information to the solution based on
Figure 8.1. However, when the individual satellites are evaluated in
terms of their specific contribution to the reduction of the error
degree-variances within the combined solution (looking at the
aposteriori variance-covariance matrix), one sees (Figure 8.2) that the
4-LASER and LAGEOS data now control the solution for low degree terms
through degree 13, and STARLETTE is no longer dominant. The impact of
optical observations on the solution is nearly completely lost in Figure
8.1, showing an insignificant contribution to the solution's diagonal
elements. However, as shown in Figure 8.2, the optical data makes
significant contributions to the solution (which must be through off-
diagonal conditioning) for the resonance (m=11 through 15) and zonal
(m=0) orders. Generally, it is desirable to obtain a solution which has
significant contributions from many satellite data sets (as is evidenced
in Figure 8.2), for this tends to average-out satellite-specific error
sources. Summing up: the data weights used in GEM-T1 (Figure 8.2) have
been selected in an attempt to assure a balanced multi-satellite
solution.

The diagonal elements can also be used diagnostically. A study of
the diagonal elements of the four-laser satellites (which were combined
to form a single matrix), revealed an anomaly for GEOS-2. This is shown
in Figure 8.3. The diagonal elements for this satellite's contribution
were originally too large. A physical explanation for this effect was
not found through a study of the magnitude of first-order gravity
perturbation estimates for this satellite. Therefore an error in our
processing of the normal equations from this satellite was
investigated. A software problem in the back-substitution of the
orbital parameters, when a priori weights were introduced on the drag
parameters, was uncovered and corrected in GEM-T1. The PGS-T2 model

contained this erroneous treatment of the GEOS-2 matrices and was also
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Figure 8.1. RMS of Percentages of Ratios of Diagonals Per Degree
Comparing Major Data Types in PGS--T2.
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Figure 8.2. Percent Reduction of Error Variances Due to Major Data Types in
Solution.
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TOTAL DATA GEM-T1 RELATIVE WEIGHTS (w,)
SAT ARCS OBS PGS-T2”  GEM-T1
LAGEOS 58 144529 40 40
STARLETTE 46 57356 10 10
4-LAS*® 151 204547 1 1+
SEASAT LASER 14 14923 1 1
SEASAT DOPPLER 14 129604 1 1
OSCAR DOPPLER 13 63098 1 0.75
6-0PT* 219 139818 5 5%
LOW INC (OPT)* 49 4461 -- 5+
LOW INC (LAS)*® 16 23055 -- 1+
WEIGHT MULTIPLYING FACTOR (). . . . . . . . . . .02 .02
KAULAWT. (107/92) . . . . . . . . ... ... 2 2
*GEM-T1 ADDITIONAL SCALE FACTOR (w,)
4-LAS _ARCS OBS W LOW INCLIN ARC OBS W
GEOS- 1 48 71287 1.13 COURIER- 1B {OPT) 10 2476 2.00
GE0S-2 28 26613 .75 YANGUARD-2RB (OPT) 10 686 2.00
GEOS-3 36 42407 .75 YANGUARD- 2 (OPT) 10 1299  2.00
BE-C 39 64240 1.50
DI-C (OPT) 10 2712 .75
; DI-C (LAS/ 4 7455 .75
5-0PT oPT) 159
BE-B 20 1739 2.0
BE-C S0 7501 1.3 DI-D (OPT) 9 6111 .50
GEOS-1 43 60750 S DI-D (LAS/ 6 11487 .75
GEOS-2 46 61403 .5 0PT) 146
ANNA-1B 30 4463 2.0
TELSTAR 30 3962 2.0 PEOLE (LAS) 6 4113 .75
ALTIM
SEASAT 8 14093

DATA ERRORS (0) FOR WEIGHT = 1

DATA
LASER
DOPPLER

OPTICAL
ALTIM

0 (A PRICRI)

im

1 cm/sec

2 arc seconds
im

Figure 8.4. GEM-T1 TOPEX Data and Weighting.
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sensitivity to resolve every coefficient to this degree. Therefore, an
external estimate of the size of the coefficients was used as a
constraint to stabilize the solution. There is an important benefit in
solving for a complete 36 X 36 field. We have found that aliasing in
the middle degrees of the model has been avoided through this relatively
high degree and order solution. And the destabilizing 1lack of
sensitivity to a subset of the coefficients is compensated through the
application of least squares collocation, which keeps coefficient errors
within less than 100% of the size of the coefficients predicted from
independent gravimetry. However, there are certain problems in carrying
out such a large solution that need to be discussed.

Firstly, the application of Kaula's rule as a constraint is
equivalent to introducing a set of additional observations of the coef-
ficients where their expected values are all zero, with a scaled version
of Kaula's power estimate used as a variance on these "observations".
This rule represents a mild use of a priori information on the
determination of low degree terms, constraining the coefficient only to
the approximate power spectrum of gravimetry. However, because some
sensitivity is lacking for high degree terms, this collocation
constraint has caused the coefficients in GEM-T1 above degree 25 to have
less power than the "true" gravity field. And at degree 36, GEM-T1 power
is about 1/3 to 1/2 of that seen in fields which used altimetry and
surface gravity. While this is troublesome, it should be noted that if
no adjustment is made of these high degree terms (i.e., the harmonic
model is truncated at a lower degree cutoff) then these terms would be
absolutely constrained to zero (as are all terms above the field
limits). Hence, with least squares collocation there is a gradual decay
in the power spectrum instead of a sharp drop to zero at the point of
truncation within the field. 1In this sense, collocation can be viewed
as permitting more power in the solved for short wavelength gravity
field, for the model, although constrained, can be extended to much

higher degree through the use of this technique.
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Altimetry and surface gravimetry provide strong sensitivity to
harmonics up to degree 360 and higher in the gravity model. Eventual
use of this data in future solutions will overcome the shortcomings of
GEM-T1, where a total reliance on satellite data, due to attenuation,
causes incomplete resolution of all higher degree gravity terms., Figure
8.5 presents a comparison of the degree variances found in GEM-T1 with
those in GEM-10B. GEM-10B is a comprehensive model which used GEOS-3
altimetry and surface gravity data and therefore did not require any
form of constraint on the size of the coefficients. The lack of high-
degree power for the GEM-T1 model is evident. Interestingly, when
preliminary altimetry data sets are even weakly introduced into GEM-T1,
(forming PGS3163), the power is much closer to the level seen in GEM-10B
(see Figure 8.5). PGS3163 is discussed further in the Calibration
Section (Section 10) of this report.

We also believe that the use of Kaula's rule as a constraint may
have altered the high-degree terms' covariances, indicating less cross-
correlation among these coefficients than is truly found in the overall
orbital signal sampled by our selection of satellites. Therefore,
calibrations using objects passing through deep resonance may be biased

if the full covariance of GEM-T1 is utilized.

However, tests against independent altimeter data show there is
valuable information in GEM-T1 above degree 25 and although the coeffic-
ients are small, they do improve the orbital fits obtained by this
field. Therefore, this 36 degree level of truncation was adopted for
GEM-T1. Plans for future efforts are to merge the GEM-T1 database with
other observations obtained by altimetric, satellite-to-satellite
tracking, and surface gravity data sources. These more comprehensive
solutions will be free of the constraint imposed on the GEM-T1
"satellite-only" model. In spite of some limitations, the GEM-T1
solution is a very accurate model at long and intermediate wavelengths,

as shown in the next paragraph.
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DEGREE VARIANCES OF
GEM-T1, GEM 10B AND
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Figure 8.5. Degree Variance Comparison for Recent Models.
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An experiment was conducted showing the effect on the GEM-T1
solution of removing the collocation term FK‘1. This was accomplished
by setting £=0. Figure 8.6 compares this test model and GEM-T1 with
independent 5°x5° gravity anomalies derived from SEASAT altimetry (Rapp,
1983a) at different levels of field truncation. In the case of the test
field, the ordinary least squares method (with f=0) could not be
successfully solved beyond degree 25. The comparison in Figure 8.6
shows that a gravity solution which lacks collocation rapidly becomes
unreliable above degree 18, with an excessively large power spectrum
found for terms beyond this point.

Although GEM-T1 has a weak power spectrum for its terms beyond
degree 25, there are strong benefits achieved in solving for a complete
36 x 36 model and using a least squares collocation approach. This is
demonstrated in Figure 8.7 where GEM-T1 has been solved only complete to
degree 20 x 20 (yielding PGS-3167) which is the same size as the earlier
GSFC GEM-L2 (Lerch et al., 1983) solution. The same gravity anomaly
comparison as described in the previous paragraph shows little improve-
ment of PGS-3167 over that of GEM-L2, and clearly inferior field

performance compared to what has been achieved in GEM-T1.

The addition of the Cyber 205 computer allowed evaluation and
solution of larger gravity models with a consistent reduction and
formation of normal matrices for all data sets which was not possible
during earlier times. This factor greatly contributed to the development
of a complete 36x36 model. GEM-T1 was the result. Previously, this
36x36 option could not be explored due to the enormous computer

resources which would have been required.
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SECTION 9.0
THE GEM-T1 SOLUTION RESULTS

9.1 THE GRAVITY MODEL

Table 9-1 presents the coefficient values which were obtained for
the GEM-T1 gravity model. The model is complete to degree and order 36,
and has been obtained from a data set consisting exclusively of ground
based satellite tracking. To stabilize the coefficient adjustment (see
Section 8), a mild constraint on the the size of the coefficients was
used to eliminate unstable adjustment of correlated high degree terms.
This model is more complete than previous GSFC "satellite-only" models,
which in the past were only solved completely to degree 20, with
isolated higher degree resonant and zonal terms (GEM-9:Lerch et al,
1979; GEM-L2: Lerch et al, 1982). The remainder of this document
discusses the GEM-T1 parameters and their calibrated accuracies in
detail. An extensive error analysis to establish field uncertainty is
described in Sections 10 and 11. A contour map of the GEM-Ti geoid is
presented in Figure 9.0. The geoid was computed using the potential
coefficients of Table 9.1 in Brun's formula (Heiskanen and Moritz, 1967,
p. 85).

9.2 OCEAN TIDE SOLUTION

With the advent of centimeter level satellite geodesy and geody-
namics, it has become necessary to accurately model the deformation of
the earth and its oceans due to tides, i.e., the temporal variations of
the geopotential, in order to obtain accurate estimates of the static
geopotential coefficients. This is in part because the data distribution
in time and space cannot be selected so that the effects of these

temporal variations average out.
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The artificial satellites suitable for geopotential recovery are
sensitive to the low degree and order harmonics in the global spherical
harmonic expansions of the tides. In fact, these satellites form a
sensitive measurement system for monitoring these effects. (Table 9.2
shows the periods of the principal long period tidal perturbations on
the orbits for the major satellites used in GEM-T1. The diurnal and
semidiurnal bands are particularly variable in frequency relative to the
corresponding periodicities of the tides on the Earth's surface since
the satellite's nodal precession and not the earth's rotation makes the

largest contribution to these periodicities.)

The approach we have used in the development of GEM-Ti1 is to
recover the relevant tidal parameters directly in the simultaneous
least squares data reduction process along with the other geodetic and
geodynamic parameters. The rationale for this approach is dictated
largely by the present uncertainty of these tidal coefficients which are
known only to about 10% of their values. This approach was demonstrated
with great success in single satellite analyses using STARLETTE
(Williamson and Marsh, 1985; Marsh et al., 1985) and LAGEOS
(Christodoulidis et al., 1986a).

The a _priori values for the ocean tides were derived as detailed
in Section 7.1.4. The body tides were held fixed according to the Wahr
values as given in Section 7.1.3 and the adopted precession and nutation
are the IAU 1980 models. Because the body tides are not separable from
the ocean tides, only the ocean tides were adjusted. The ocean tides
recovered actually represent a determination of the total temporal
variations of the geopotential exterior to the Earth's atmosphere in the

presence of a fixed solid earth tidal model.

Table 9.3 summarizes the ocean tidal terms which were modeled or
ad justed in the GEM-T1 solution. Due to the altitudes of the satellites,
the background model is only required to degree 6. Coefficients associ-

ated with the primary tidal terms were adjusted. This restriction of
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Figure 9.1. Satellite Tidal Sensitivities from Single Satellite Solutions

for 5 x 5 Gravity Coefficients and 2nd and 3rd Degree
Tidal Terms.
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Table 9.2

PERIODS (DAYS) OF PRINCIPAL LONG PERIOD
SATELLITE PERTURBATIONS
DUE TO SOLID EARTH AND OCEAN TIDES
FOR 12 MAJOR TIDE CONSTITUENTS

N n 1 n ['g] N [Tg) n [Tp] n n n
< n " n *2] '] Vg ] Ig] N \0 " N
" n n 1 (Tg] n N n n N n N
I O N R O O . - B - = O - T A I
V=) M~ \n Tp) n g} Tg] [Tp] n N M Tx]
Tp) " ['=] ™~ < o] Ve < *x] M~ f~ (e
(=] o o o -— - - N N N N ™N
SATELLITE |[Sa | Ssa | Mm | Mf | O P, Ky N2 M | T2 [ S2 |Ky
LAGEOS 365|183 | 27.6| 13.7] 138|221 |1050 [9.20|14.0 | 159 |280 | 524

STARLETTE |365| 183 | 27.6| 13.7 | 119 | 60.8 [91.0 7.61 10.5 |33.1 [36.4)|455

GEDS-1 365|183 | 27.6| 13.7]12.6 | 85.4 |160 8.20|11.7 | 48.3 |S5.7 | 80.2
GEOS-2 365|183 | 27.6| 13.7] 14.4| 629 |257 9.83 |15.3 | 2250/436 | 129
GEDS-3 365 | 183 | 27.6| 13.7 ] 15.2 | 482 132 10.6 |17.2 | 145 [104 | 66.2
BE-B 365 | 183 | 27.6| 13.7] 13.1 | 118 |332 8.66 |12.6 | 70.2 {87.0( 166
BE-C 365 | 183 | 27.6| 13.7| 11.8 {579 (848 7.51 (10.3 |31.5(34.4|42.4
SEASAT 365 | 183 | 27.6| 13.7| 148 | 7130{178 10.2]16.1 | 331 |174 |89.0

TELSTAR-1 (365 | 183 | 27.6| 13.7| 12.8 | 93.9 | 193 8.34 112.0 {53.9 (63.2(96.7

ANNA 365 | 183 | 27.6( 13.7] 120|644 ([99.4 |7.71 [10.7 (35.3[{39.1]|49.7

OSCAR 365 | 183 | 27.6| 13.7| 13.6 {180 {11700]/9.12|13.6 {119 (177 |5830
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Doodson

No.

056.554
05?.555
058.554
065.455
075.955
0?5.565

135.655
145.545
145.555
155.455
135.655
162.556
163.555
164.556
165.545
165.555
165.565
166.554
167.555
175.455
185.555

Table 9.3

OCEAN TIDE MODELING

FOR

GRAVITY RECOVERY

o LONG PERIOD TIDES o

Darwin

Name Modeled

Sa deg. 2—6

Ssa prograde

only
Mm
M
e DIURNAL e

Q, deg. 2—6
prograde

0, and
retrograde

M

Pl

Py

$y

Ky

Sy

00, !

222

Adjusted

deg. 2
deg. 2
none
deg. 2
deg. 2
none

none
none

deg. 2,3, 4

none
none
none

deg. 2,3, 4

none
none

deg. 2, 3, 4

none
nione
none
none
none




Doodson

No.

245.655
2355.545
255.555
265.455
271.597
272.556
273.555
274.9554
2?5.555
285.455
295.555

e SEMI-DIURNAL o

Darwin

Name Modeled
N> deg. 2—6

prograde

M, and
L, retrograde
T2
S2
R2
K>
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Ad justed

deg.
deg.
deg.
deg.

deg.

2,3, 4,5
none
2,3,4,5
none
none
2,3, 4,5
2,3,4,5
none
2,3,4,5
none
none



adjusting the coefficients of the primary terms was adopted because of
computer limitations. The background tidal terms are less significant in
their orbital perturbations than those from the primary terms, and
errors in these terms are not expected to be of consequence now that

they are somewhat reliably modeled (we estimate 10 to 20% uncertaintyj.

Tables 9.4 through 9.7 present the recovered ocean tidai coef-
ficients by degree. The values shown for the coefficient and phase
uncertainties were obtained from the covariance analysis which produced
the properly calibrated gravity coefficients as described in Section
10. These uncertainties are believed to give realistic estimates for
the error in the total exterior tidal potential. Tables 9.4 to 9.7 also
compare our GEM-T1 ocean tide coefficients with those obtained from the
Schwiderski and Parke models, which were conventionally obtained by
solution of the Laplace Tidal Equations using deep ocean tide guage
data. The variation seen between the two oceanographic tidal solutions
is often larger than the uncertainty in our recovered solution:
Generally the satellite results are in reasonable agreement with the
Schwiderski and Parke models. A more complete discussion of the GEM-T1
tidal solution is found in Christodoulidis et al., 1987.

A limited test was performed to assess the relative contribution
of each of the major satellites in the solution to the tide coefficient
recovery. Figure 9.1 shows the relative standard deviations of the
second and third degree diurnal and semidiurnal tides from solutions
based on individual satellites. Each test solution included the
ad justment of a (5x5) gravity model simultaneously with the second and
third degree tidal terms. The weights in these solutions were 1 meter
on range and 1 cm/sec on range-rate. LAGEOS dominates the second degree
semidiurnal recovery, and the polar OSCAR Doppler satellite is not
strongly contributing to the solution. Otherwise, the individual

satellites contribute nearly equally to within a factor of two or three.
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9.3  STATION COORDINATE SOLUTIONS AND COMPARISONS

9.3.1 Introduction

As has been discussed for some time, geopotential modeling has
been the dominant source of error in previous station coordinate
solutions (Smith et al, 1979). More recently, these uncertainties have
been diminishing with the collection of more tracking data and the
recovery of vrefined gravity models. In Smith et al (1985), the
uncertainties in the geopotential model (GEM-L2) were estimated to have
a degrading effect of less than 5 em in the coordinate solutions. The

development of the improved TOPEX gravity model coffers

VIS

1 i
rount

ty to
compute new coordinate solutions whereby many of the uncertainties
associated with the geopotential model have been further minimized. As
part of these efforts, better models for describing tides, polar motion,
and non-conservative forces have been developed thereby minimizing
uncertainties arising from these parameters. This section restricts
itself to preliminary solutions for station coordinates and an
assessment of the quality of station positioning which has been
achieved.

9.3.2 GEM-T1 STATIONS

The GEM-T?1 solution was made holding the station coordinates fixed
in the TCS system at the values described in Section 6. However, with
the arrival of GEM-T1 force modeling, two solutions have been performed

and tested against the a priori values. These solutions included:

* Doppler station coordinates from a combination of SEASAT and
OSCAR data and

* A laser solution from 5 years of LAGEOS observations.
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The laser solution used the GEM-T1 gravity and tide models. The Doppler
solution used an earlier GEM-T1 model which contained GEM T1's entire

doppler data set but was otherwise incomplete.

9.3.3 Laser Station Solutions

We will concern ourselves, for the moment, with the laser network.
A solution for coordinates for stations tracking LAGEOS has been
computed utilizing the SOLVE software package. This solution
incorporates five years of LAGEOS tracking data and also solves for
polar motion, A1-UT1, GM, and the Love numbers hs, 25 The GEM-T1
gravity model was used in this solution. This coordinate solution is
equivalent to a first iteration using a new gravity model and is not
equivalent to making a simultaneous solution for station positions and
gravity field. This means that part of the a priori coordinate
uncertainties may possibly have been absorbed in the adjustment for the
gravity field (i.e. the computation for GEM-T1) since the gravity field

and the station positions may be, in some way, correlated.

To test for the internal consistency of the solution, the solved
for coordinates were compared to the a priori set of coordinates in the
TOPEX geodetic file. This comparison (as well as those that follow) was
performed using software which determines the seven parameter trans-
formation between the two sets of coordinates in a least squares
algorithm. This is the same software used in creating the geodetic file

(see Section 6 on Station Coordinates).

Within the transformation parameters, the translational compon-
ents provide an internal check of the stability of the origin of the
coordinate system. For the LAGEOS solution, these parameters reveal an

encouraging picture. The results discussed here are summarized in
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Table 9.8 along with results from the Doppler solutions. The 2.5 cm
value (and less) for the origin translation implies that the coordinate
system and reference frame were properly maintained in the development
of the TOPEX gravity model effort. The rotational elements of the
transformation provide information regarding mismodeling of the axes
definition. The values for these rotations are at the milli-arc second

level.

Differences in cartesian and geodetic coordinates can be analyzed
after the transformation has been made. With these differences, aber-
rant stations can be isolated easily and the RMS value of all of the
differences allows an assessment of the consistency between the two sets
of coordinates. Upon removing a small set of weakly determined stations,
a 43 station comparison was made. The RMS value of the differences for
these 43 stations is 5 cm or less for each Cartesian coordinate. Thus
one can conclude that the a priori positions (the SL-6 values) for the
LAGEOS tracking stations were well determined and that, in general;
these positions are known relatively to better than 5 em in any

direction.

9.3.4 Doppler Station Solutions

The Doppler results are not as encouraging as the laser results.
The GSFC group has computed a set of solutions for Doppler station
coordinates based on the complete SEASAT and OSCAR tracking datii. The
station coordinates from this solution are thought to be among the best
available and are given in Table 9.9. The University of Texas Center
for Space Research has also made a similar solution based on one of
their preliminary TOPEX gravity models.

First, we will discuss the comparison results for the GSFC

SEASAT/OSCAR solution with the a priori station coordinates in the TOPEX
geodetic file. Referring again to Table 9.8, it can be noted that the
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center of mass offset between the two sets of coordinates is quite small
in the equatorial plane but the magnitude of the axial displacement in
the Z direction is nearly -1 meter. This result is similar to that
observed in earlier, and unfortunately unreported, GSFC studies dealing
with laser tracking sites determined in similar coordinate systems. In
the earlier work, a pair of solutions for laser coordinates was made,
one based on the SL-6 system and the other based on a coordinate system
associated with the PGS-S4 gravity model. The earlier station
comparison between these two sets of coordinates showed, as does our
station comparison, this -1m Z coordinate offset. Since our a priori
stations are based on the SL-6 system, it seems that in the ad justment
for the Doppler stations, the stations are adjusting towards those
computed in the PGS-SU based solution. The scale parameter is at the 11
parts per billion level, this slight scale change is most likely
attributable to the adjustment of GM. The RMS of the differences
between the transformed coordinates is at the 60 cm level (an order of
magnitude worse than the lasers). A portion of the RMS disagreenent is
attributable to errors in the Doppler tracking systems and in part due
to the larger SEASAT orbit errors.

A comparison of the GSFC SEASAT/OSCAR solution has been made with
a similar solution by University of Texas utilizing their PTGF-2 gravity
model (the comparison was provided courtesy of C.K. Shum) . This
comparison is also summarized in Table 9.8. The translational components
of the seven parameter transformation are of the same magnitude as those
seen in the previous discussion except that the AZ shift is now quite
small. Thus, the adjusted Doppler station coordinates in both the GSFC
and UT solutions appear to agree well with regard to the coordinate
system origin. By the same token, the RMS differences of the positions
after transformation are on the 0.5 to 1.5 m level. This leads one to
conclude that the station positions are still not resolvable to a level

below 50 cm with Doppler data.
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The causes for the poor resolution at the Doppler sites are still
being studied at this time. The RMS differences after transformation
are consistent with the formal uncertainties of 20 to 50 cm observed in
the Doppler solution. Modeling the Doppler data as one way average
range-rate With pass by pass measurement bias adjustments is the major
reason that the solution is formally weak. Additional areas of
investigation to improve the determination of the Doppler sites include
a re-assessment of editing procedures and re-evaluation of deficiencies
in the measurement model, among others. If ten centimeter positioning

is expected from TOPEX Doppler tracking, these issues must be resolved.

9.3.5 Summary

The preliminary station solutions basically demonstrate two
general conclusions. First, the laser sites in general are very well
determined in the a priori geodetic file. Second, the Doppler station
coordinates have an uncertainty of 50cm to 1m at some sites. The laser
station result comes as no surprise since the a priori laser site
positions were determined in a dynamic solution (SL-6) made at GSFC
which is very similar in character to the TOPEX laser solution. We
note, in conclusion, that we are currently capable of obtaining with the
LAGEOS laser data more than an order of magnitude better station

location accuracy than with Doppler data.

9.4 EVALUATION OF THE ADJUSTED EARTH ORIENTATION PARAMETERS

9.4.1 Introduction

Accurate determination of the coordinates of the pole requires a
robust, accurate and uniformly distributed set of tracking data.
Satellites with minimal short periodic perturbations due to the Earth's

gravity field are always preferred in this task (e.g. LAGEOS).
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Considering the data on which our gravity solution is based and taking
into account the above, we decided at present to adjust the pole
positions during the 1980-84 period. During this period alone the
a priori Earth Orientation Parameters (EOP) can be possibly improved in

a combined solution.

9.4.2 The 1980-84 Solution

The a priori polar motion series for the 1980-84 period are shown
in Figure 9.2; the series that was simultaneously estimated with the
GEM-T1 field is shown in Figure 9.3 . Since we have kept the station
positions fixed to their a priori values, we do not expect any large
adjustments. This is clearly evident from the two figures. Within each
30-day arc of LAGEOS, a single value for A1-UT1 is held unadjusted to
define the longitude of this satellite arc. This presents problems when
the quality of the overall solution is to be assessed. The fact that
our estimates of Earth rotation are recovered discontinuously from one
30-day interval to the next was overcome by the following procedure.
The length of day variation series (LODR) were interpolated using cubic
splines to determine the missing (constrained) values (i.e., those held
fixed at the a priori values). Once this was done we formed a
continuous A.1-UTIR series adopting only a starting value from BIH.
Subsequently, the A.1-UT1R series were smoothed using a Vondrak filter
with e=10-6. This effectively suppresses periods below fifty to sixty
days. The smoothed LODR series were obtained from the smoothed A.1-UT1R
series by forward differencing. Both the a priori and estimated
(smooth) series of Earth rotation (A.1-UT1R) and length of day variation
(LODR) are shown in Figure 9.4. The next step was to remove the strong
periodicities from the signals so that the underlying detailed structure

could be revealed.
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9.4.3 The_Annual and Chandler Cycles

To remove the coordinate system dependence of this evaluation we
first transformed the GEM-T1 solution to the a priori series frame of
reference. This was accomplished by the same least squares process that
was used to determine the transformation parameters between the LAGEOS
SL6 series and the BIH series in the creation of the a priori series
(see Section 3.0). The results of this transformation are given in
Table 9.10. The raw differences due to our adjustment are shown in
Figures 9.5 and 9.6 for the polar motion and Earth rotation series
respectively., The large b1 rotation of 17.3 mas indicates a shift of
the origin along the yp—axis (that is in the negative Y-axis direction)
as indicated in Figure 9.7. This has been resolved as an a priori bias
of ~18 mas along the Goddard meridian (A~283°) between the Z-axis of the
a priori stations reference frame and the origin of the a priori polar
motion, Since the station coordinates were held fixed during this
solution, this rigid body rotation of the station network had to be
accommodated by an opposite rotation of the estimated polar motion

series.

An 18 mas rotation about an axis perpendicular to the Goddard
meridian (A~283°) can be decomposed in two components along the X and
yp axes; the magnitudes of these turn out to be 4,0 mas and 17.5 mas
respectively. It thus becomes apparent that there is no real change in
the reference frame of the TOPEX solution for polar motion, and the
Z-axis of the CTRS is retained.

An argument similar to the above explains the large systematic
rotation a3=14.6 mas about the Z-axis. This was derived on the
assumption that 8320. This however turns out to be incorrect since the
transformation between the a priori TOPEX stations and the stations
compatible with the a priori Earth orientation series 1indicates a

systematic longitudinal rotation of =6.9 mas. On top of that, the

240




Table 9.10

GEM-T1 TO APRIORI TOPEX

EARTH ORIENTATION SERIES
TRANSFORMATION PARAMETERS

REFERENCE FRAME ROTATIONS

B,=17.3 +0.2 mas
B2= 2.5+ 0.2 mas
Bs= 0.0 mas

a,=-0.13 + 0.2 mas
a,=-0.03 £+ 0.2 mas

az= 14.1 + 0.2 mas

EOP SERIES RAW DIFFERENCES

RMS (Ax) : 4.0 mas
RMS (Ay) : 3.5 mas
RMS (AUT) : 1.2 ms
RMS (ALOD): 0.09 ms

241



X POLE DIFF (mas)

¥ POLE DIFF {(mas)

20

-10 4

-20

RMS=4.0

44000 44500 45000

Modified Julian Date

45500

46000

20 1

10 4

RMS=3.5

44000 44500 45000

Modified Julian Date

45500

Figure 9.5. GEM-T1 Minus A Priori Polar Motion Series.
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Figure 9.7.

GEM-T1 Polar Motion Origin.
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Starlette arcs that contributed to the GEM-T1 solution are based on a
set of stations developed during MERIT that have an additional longitude
offset of -8.8 mas with respect to the set of stations used for all
other earlier satellite data sets. This discrepancy was largely
accommodated by shifting the right-hand sides when combining normal
matrices to produce a single matrix with a common station set. However,
all stations are not common, and those which did not shift have to be
accommodated somehow in the least squares process. Therefore we modify
our original estimate of 8350 mas to 832 -15.7 mas and conclude that
a3® -1.2 mas which is an acceptable change considering the fact that
this solution is based on the simultaneous adjustment of several arcs
from various satellites through an intricate weighted least squares
process. The a priori Earth rotation series is based largely on
astrometry (75%) and only in the very recent years on the preliminary
VLBI results (25%). The results of fitting the EOP series with the two
frequency models are presented in Tables 9.11 and 9.12. Since aliasing
is possible due to the incomplete coverage of the beat period (short by
1.25 years), the estimates listed here are only meant for relative
comparisons. They should not be used to compare with those resulting
from the analysis of series covering other time periods. It is rather
clear that the GEM-T1 solution agrees to a great extent with the
a priori series. This is what we expected and hoped for since the two
series share the strongest data set over the intercomparison period,
namely, the LAGEOS SLR data. Comparing the rms of fit with the observed
oscillations in the two components we conclude that the two frequency
model explains satisfactorily more than 95% of the original signal. We
have further analyzed the residuals to this model by creating their
power spectra and subsequently the coherence spectra between the
a priori and GEM-T1 series. There is a better than 80% agreement
between all of the series at periods longer than sixty days.
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Table 9 11

COMPARISON OF
POLAR MOTION SERIES PARAMETERS
FOR THE
TWO FREQUENCY MODEL

’;}= A + Bt + C_cos (%:ft +0,)+ C cos (ot +®,)
SERIES
MODEL APRIORI GEM-TI
PARAMETER X y X y
A (mas) | —2.521.3 12.3+1.3 -1.5+1.3 10.2+1.3
B (mas/yr) | 0.71205 -2.3+0.5 0.3+0.5 -1.4:0.5

C. (mas) |1035+1.2 1033215 103.8+¢1.2 102.8+1.4
P, (days) |370.6:0.7 373.710.7 370.8+0.7 373.710.7
¢, (°) 138.121.7 237.4:1.8 136.11.7 2375217
C. (mas) [180.1+1.2 179.0215 180.1+1.2 178.4:1.5
P. (days) |432.7205 433.1:07 432.5:05 433.1206

¢ (°) 1.5+0.9 959+1.1 1.3:09 95 8+1.1

c

RMS (mas) 119 11.8 12.0 11.2

(X . YT
- 7




Table 9.12

COMPARISON OF
EARTH ROTATION SERIES PARAMETERS

FOR THE
TWO FREQUENCY MODEL

M'UT'R}= A+ Bt +C_cos (f,—:t +¢,.)+C, cos (%}t +¢.)

LODR
SERIES

MODEL APRIORI GEM-TI
PARAMETER | A1-UTI | Loon* A1-UT1 LODR*
A (ms) 18436.1:3.9 2.42+:003 18436.8:3.9 2.42:+0.03
B (mas/yr) | 791.9:15 -0.1320.01 7920+15 -0.13:0.01
Ca (ms) 249:28 0.40:002 250:2.7 0.40:002
P, (days) | 340.8:43 3650223 3387242 363.6322
¢, (°) 185.2+13.2 331562 179.2:+13.1 326.6159
C. (ms) 146228 0.34:002 14.0:28 0.34:0.02
P, (days) 183.5:2.0 182.4:06 180.4:22 182.3:06
¢ (°) 71.3+215 1369169 529:23.4 137.5:6.6
RMS (ms) 36.8 0.27 36.8 0.26

t(days) = T-T,

To = MJD 44239.0
* NOTE: LODR values refer to 2.5 days prior to T.
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9.4.4 Summary

We have presented here an evaluation of the first Earth Orientation
Parameters series obtained by the GEM-T1 solution. A continuous Earth
rotation series was derived on the basis of the estimated Earth rotation
variations (LODR). We have a viable technique to unify this inherently
discontinuous series into a continuous one with satisfactory results and
no apparent introduction of any distortions. The results indicate that
all series agree very well with the a Eriori, a fact that was
intuitively expected. A more comprehensive analysis of the EOPs will be
possible (and more meaningful) when a complete solution (including

station adjustments) becomes available.
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SECTION 10.0
A CALIBRATION OF GEM-T1 MODEL ACCURACY

One of the difficulties faced in a numerical solution for a large
number of physical parameters is the determination of meaningful
accuracy estimates for the result beyond what is learned from formal
solution uncertainties. As is well known, the process of fitting a
model to observations provides an internal measure of precision on the
assumption that the model is exact, i.e., formal statistics. But the

value of this estimate is generally optimistic with respect to the real

an approximate (incomplete) mathematical model. Yet,
without a better estimate of the accuracy of the geopotential, the
results may have limited value, especially in non-orbital

investigations,

In recent GEM solutions, a considerable effort has gone into the
calibration of the field errors. The accuracy assessments, for example
those found in Lerch et al, (1985), have relied almost exclusively on
tests using independent data. These calibrations have been strengthened
by having "satellite-only" models which exclude altimetry and surface
gravimetry. One of the best ways of obtaining realistic errors for the
models comes from comparing satellite derived information to independent
and globally well distributed gravity anomaly and altimetry observa-
tions. Although independent data are employed, the calibration needs to
be well designed, for there is a wide range of wavelengths spanned
within a geopotential solution. Although these tests are never complete
for every harmonic term in fields containing 1000 or more coefficients,
they need to be diverse enough so that the long, intermediate and short

wavelength portions of the field are calibrated in an overall fashion.
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In previous GEM models, the accuracies of the fields have been
successfully calibrated through the application of a single scaling
factor applied to the formal variances of the solution. This approach
is again undertaken here. However, it should be noted that, while the
method is generally satisfactory, the lowest degree and order portion of
the field is somewhat optimistically evaluated with this approach (by
approximately 30%). This problem was found in the calibration of GEM-
L2 (Lerch et al, 1985) and seems to apply equally to the calibration
performed here on our new GEM-T1. Apparently, although it is not too
surprising, systematic errors arising from the orbit determination
procedures seem to more adversely alias the long rather than short
wavelength portion of the gravity model. Still, as percentages of the
full coefficient values, the errors found in the long wavelength terms
in the model are much smaller than those found elsewhere in the field.
Therefore, we have continued to produce error estimates based on a
single scaling factor because the complexity introduced by wusing
multiple scaling factors 1is presently unjustified and the single
coefficient approach (our experience has shown) produces a good overall
calibration. To more fully understand this calibration, the method of

solution for GEM-T1 found in Section 8 should be consulted.

Based upon the data weights and scaling factors described in
Section 8.2, the uncertainty in the GEM-T1 gravity solution is shown in
Figure 10.1. When compared pictorially to other GEM models, as is done
in Figure 10.2, one sees clearly the major reduction in errors that has
been achieved, with our new gravity field modeling capabilities, in the
GEM-T1 solution. The adequacy of these estimates of error is the
subject of the remainder of this section. (The calibrated uncertainties
for GEM-L2 and PGS-T2 have been previously shown in Figures 5.2.8a and

5.2.8> and may be consulted for comparison purposes.)

An interesting manifestation of our use of Jleast squares

collocation can be seen upon examination of Figure 10.1. The
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uncertainty for the highest degree terms in the model (except those of
the zonal and resonant orders) are shown to be nearly 100% in error
based upon their expected power. While collectively these terms contain
valuable signal, individually, they are not well resolved. However,
truncation of the field to a lower degree is unjustified, for as already
shown in Figure 8.7, a significant amount of valuable information is
lost by taking this approach. Nevertheless, based upon this preliminary
scrutiny of the magnitude of the calibrated coefficient uncertainties,
these high degree terms have been constrained to have no more than 100%
of their expected power as their estimated error; and this is both a
reasonable and desirable result for terms poorly resolved by dynamic

orbital tracking data.
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10.1 THE GEM-T1 CALIBRATION OF A SATELLITE MODEL'S ERRORS USING
GRAVITY ANOMALY DATA

Mean free air gravity anomalies (on the geoid) can be calculated
from the spherical harmonics of a gravity field as follows (Heiskanen

and Moritz, 1967):

fmax % a, L_ _ ~

Ag = ) y Y(2-1)Bg(-r—) Py (5ine) [Clmcos mA+S, sin mA | (10.1)
£=2 m=0

where

Y is the mean value of equatorial gravity.

ag is the earth's semi-major axis.

r is the radius to the surface of the best fitting earth
ellipsoid.

31m(sin¢) is the fully normalized associated Legendre function
for geocentric latitude ¢.

A is the geographic longitude,

Bg is Pellinen's smoothing factor (described in
Katsambalos, 1979) corresponding to the block size over
which Ags is averaged over. (Note: B1=1 for point
anomaly values)

and

Clm’glm are the normalized spherical harmonics of the field
with the reference ellipsoid zonal potential (even

terms only) subtracted.
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If

<> = global average value
E = statistically expected value and
€g = Error in Ags from coefficient commission errors
then
fmax &
2, 2 2. 0_472 2(% = 2
E <el> = oy 400 (88,) ) Y OY(e-1)° ¢ (sz'szm) By (10.2)
£=2 m=0
where
E <e§> is the expected error in the gravity anomalies based

upon the estimated errors in the satellite potential coefficients and

cz(Ezm,Ezm) is the variance of the pair of coefficients Eim’gﬁm’

Section 8.2 describes the data weights and scaling factors which
have been determined to yield a well balanced solution for GEM-T1, and a
solution which has realistic potential coefficient errors within its
covariance. We wish to present the calibration this model has undergone
based upon the best available and refined gravimetry and altimetry which
we have employed as independent measures. Kaula (1966) showed how the
errors (both of omission and commission) in a harmonic field can be
estimated directly by comparison with independent global surface gravity
data without forming harmonics for the surface information. The
essential statistic is the difference between the global variance of the
computed quantity and the covariance of computed and measured data. The
expected value of this statistic is the expected global commission error
of the model. If one also has reliable information on the errors in the
surface data one can also estimate the omission (truncation) error in

the harmonic field by computing the rms difference of the two data sets.
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In terms of gravity anomalies as developed by Kaula (1966) the

mean square commission errors are estimated for a given blocksize as:
E <e2> = <Ag>> - <Ag Ag_> (10.3)
s €5 g B8y *

where the calculated value Ags is

Ags = Agtrue (for harmonics in the model) + es averaged over a

given blocksize

and the measured Ag is

Ag + Ag averaged over the same block

. + 4g
omission data
size; 8g is measurement noise in Ag.

= Agtr'ue

The omission errors are estimated as:

2

E <Ag > = <(Ag-Ags)2> - [<Ag§> - <ag 8g>] - <sg°

data> (10.4)

omission

To estimate a further scale factor in the coefficient
uncertainties, we compare the estimated commission error from surface
data, to model uncertainties and seek the scaling factor k in the
equation:

EST ¢ (Ag.) = E e®> =k o (10.5)
true 8 s GEM-T1

where

k is to be determined from this analysis.
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Unfortunately, for gravity anomalies the omission error for low
degree fields is large and this simple estimate for commission error
(Eq. 10.3) is unreliable for these terms. But the technique appears to
give reliable results for complete high degree models especially in
comparisons with global anomalies including marine values derived from
altimetry. This calibration is most sensitive to the high degree and
order field. Table 10.1 presents results of this calibration for
GEM-T1.

The data sets used to calibrate our satellite geopotential models

were obtained from two sources. Terrestrial surface gravimetric
ancmalies were obtained from Rapp, (1981). They were in 1°x1° observed
(or geophysically predicted) areal means. Altimeter derived gravity

anomalies from SEASAT were also used. These gravity anomalies were used
in the form of 5° equal area mean anomalies computed from the original
1° values. The total estimated commission error for GEM-T1 based on the
uncertainties in Figure 10.1 for 5° anomalies is given by:

- - 1/2
6 ¢ P
ocem T1(%8g) = v | 11 By (a-1)%°(C, 5, = 4.5 mgals
_2=2 m=0 :
where:
B is Pellinen's smoothing operator for 5° anomalies.

Table 10.1 presents the results of the calibrations in terms of
the additional factor, k. This calibration, based on surface gravity
alone, shows that our %em have been estimated to within 4%. However,
when altimetry is also utilized, it seems that we have been conservative
in the estimation of our field model uncertainties by nearly a factor of
2. We have chosen the more conservative estimate of field uncertainty.
This discrepancy was not found to this extent in the calibration of

GEM-L2 (Lerch et al., 1985b) and it appears to occur in GEM-T1 due to
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its solution for higher degree terms. These terms have relatively more
constraint within the collocation solution and have lowered power which
is known to be unrealistic. The error estimator used here (Kaula's)
will give a biased answer which favors a field with lower power. This
can be seen in Equation (10.3) where the errors in a field with lower

power is seen to have underestimated errors.

Figure 10.3 shows the agreement of SEASAT altimetry with recent
GEM gravity models more directly. Again we use Rapp's 1°x1° estimates
of oceanic gravity anomalies obtained from sea surface undulations. We
have formed 5°x5° blocks from these values. In Figure 10.3.1 we show
the computed residual gravity anomaly for the GEM models at different
degrees of truncation. Note the GEM-T1 "satellite-only" model agrees
much better with the Seasat altimetric information than does the GEM-L2
model which is its predecessor. GEM-T1 performs nearly as well as
GEM-10B which wutilized altimeter data. PGS 3163, shown here for
comparison purposes, is a version of GEM-T1 which contains SEASAT
altimeter data, and as expected, performs best in this comparison. Note
also, the improvement over PGS-T2' found with the GEM-T1 model.

Richard Rapp has recently made available to us a new set of alti-
metrically based ocean gravity anomalies and these have been compared to
GEM-T1 as was done in Figure 10.3.1. A comparison of GEM-T1 with both
the original (1981) and most recent (1985) SEASAT and GEOS-3 gravity
anomalies underscores the point that while the altimetry is quite good
and a source for independent testing of our fields, it too, is subject
to improvement. It is encouraging to see that progress in both global
gravity modeling and altimeter analyses are converging to an unique and
absolute answer. We are making the necessary changes to incorporate

this new altimetric gravity data set into future calibration activities.

As alluded to earlier, these gravity anomaly data sets are some-

what insensitive to the longer wavelength gravity field. Figure 10.4
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presents the error spectrum for GEM-L2 compared to that which is calcu-
lated from five-degree gravity anomalies. Based on Figure 10.4 the
calibration described in Table 10.1 does not reliably test those terms
below degree 8 in the GEM-T1 model. As indicated earlier the
calibration for high degree terms may not be completely reliable because
their low overall power in the GEM-T1 recovery may bias the Kaula error
estimator. Hence we substantiate this calibration with additional tests

as described throughout the remainder of this section.

10.2 CALIBRATION BASED UPON FIELD SUBSET SOLUTION TESTING

A new technique (Lerch, 1985a) has been developed for gravity
model calibrations of errors and applied to GEM-T1. First the new
method is reviewed along with test results which have verified the error
estimates for GEM-L2. GEM-L2 has been previously calibrated by a number
of different methods (Lerch et al., 1985b). If our new procedure yields
comparable results to those found earlier for GEM-L2, then we have some

verification of its performance.

A preliminary mathematical description of this new technique is
given. We will define quantities used in the calibration of the
geopotential coefficient errors between two fields, F and F where:

F:C S » 0's (coeff. standard deviations)

m’ T &m
F . C T et
F : Clm’ ng, g's (10.6)
AF: Asz = (Clm-sz), likewise Aszm, Ao
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(herein, the bar notation indicates the second model and is no longer
used to denote field normalization.) The calibration quantities are

further defined by

- —1/2
LAy + asg
RMSR(AF) = ) ——= (A: difference operator)
m=0 2% + 1
- 02 . -1/2
L (Clm) (Slm) _
oy = ) (similarly for o)
m=0 2% + 1
2 2
el E(RMSQ) (10.7)
2 -2 A =
=0, * 0y when F is independent of F (10.7a)

o N

o5 - oge when data in F are fully contained in F.  (10.7b)

Again, a calibration scale factor per degree, &, is denoted as
k2 and is given by

% S , (10.8)

From equations (10.7) and (10.8) we have two methods for cali-
brating errors: the first when the fields F and F are independent and
contain no common data; the second when the data in F are wholly
contained in F. To satisfy the input criteria for this test the four

models which were employed are described below:
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o] GEM-9 is a satellite-only model which was published in Lerch
et al, 1979. It is complete to degree and order 20. The
gravity coefficients have no contributions from LAGEOS
ranging, radar altimetry, or surface gravimetry. However, a

limited amount of early STARLETTE laser data was utilized.

o GEM-9A is a version of GEM-9 which was re-determined after
removal of the STARLETTE data.

o GEM-L2 is a satellite-only model which was published in Lerch
et al., 1982. It was a solution which combined GEM-9 with
LAGEOS laser ranging. Therefore, the data found within GEM-9
is entirely found within GEM-L2.

o TEST FIELD was a special model developed from available
sub-sets of normal equations. It contained recent LAGEOS and
STARLETTE laser observations, surface gravimetry and SEASAT
altimetry. It is therefore, by construction, a model whose
data are completely independent of the data within GEM-9A

described above.

Hence GEM~9A and TEST FIELD are evaluated with eq. (10.7a) for
independent fields and GEM-9 and GEM-L2 are evaluated using eq. (10.7b)
for dependent fields. Figure 10.5 presents the resulting calibration
factors k2 determined from each of the methods. Also shown are the
averages of the calibration factors for the two methods. Clearly, the
two methods show a good agreement for field calibrations. More
important, the values of the estimated calibration factors, kz, are
centered about k2=1, which 1indicates that the overall uncertainties
estimated by these methods agree well with the extensive calibration
results previously obtained for the GEM-9 and GEM-L2 models, It is
interesting to note that, as explained in the introduction to this

section, the lower degree terms in the models may be optimistically
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calibrated through our use of a scaled covariance for field uncertainty
estimation. As seen in Figure 10.5, the low degree terms have a cali-
bration scaling factor which exceeds 1.0, but only at most by 30% at its
largest offset from unity. Therefore the results of this method for
gravity model calibration overall agree quite well with what had earlier

been determined for GEM-L2 using different techniques.

The method selected for assessing the reliability of the
estimated GEM-T1 uncertainties corresponds to using eq. (10.7b) in which
two models are used, where the first is obtained from data totally
contained within the more complete data set found in the second. These
calibrations required making several experimental gravity models based

on subsets of the data used to obtain GEM-T1.

For the tests on GEM-T?% we examine several additional

statistics. We calculate:

2 2 \1/2
RMSlm = (Aclm + Aslm)
2 =2 1/2
€om = (sz Olm) (10.9)
klm = RMSlm/elm

Coefficient statistics both by degree and by order are also evaluated

through

- —1/2

L

kg = ) Ko/ (24+1)
(10.10)
~36 , —1/2

k= Y Kk /N
m tm’ m

L=m
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where N, equals the number of terms of order m (i.e., 36-m+1). As will

be shown, similar results are obtained for either km or kg'

The scale factors kl are shown in Figure 10.6 for two cases:
(1) GEM-T1 has been compared to an experimental version of GEM-T1
which lacked the STARLETTE data, and

(2) GEM-T1 has been compared to a version of GEM-T1 which lacked
the data from four laser satellites--BE-C, GEOS-1, GEOS-2 and
GEOS-3.

The scale factors which were obtained by these calibrations (Figure
10.6) are close to unity for both cases with an overall average

calibration factor of

(where the overbar indicates averaging)

The size of the subset of the potential coefficients used impacts the
determination of these scaling parameters. For any individual coef-
ficient, the factor would tend to be somewhat random. Therefore, the
large subsets of coefficients (as indicated in (eq. 10.10)) provide a
better determination of the overall calibration. Consequently, the
slightly greater variability seen in Figure 10.6 for the low degree kl
possibly is explained by the limited number of coefficients which are
sampled (2% + 1) at these lower degrees. Figure 10.7 shows the
02, el, and RMSz for the second case. Figure 10.8 presents results
for the Kn scaling parameters determined from both of these cases, but

now sampling the coefficient subsets by order. When examined by order,

the average scale factor is found to be
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km = 0.99
Finally, the individual coefficient variability for these scaling
parameters is shown in Figure 10.9. Overall, these fields seem to
perform well when calibrated through these tests, and the overall scale
factor obtained agrees well with that found using surface gravimetry

and altimetry as described in Section 10.1.

Returning for a moment to Figure 10.8, one sees large scale
factors for the orders where m=27 through 29 when STARLETTE data is
eliminated from the solution. These orders have a strong secondary
resonance with the STARLETTE orbit, and STARLETTE senses resonant terms
beyond the 36th degree of truncation used when solving GEM-T1. There-
fore, unconsidered aliasing error (due to STARLETTE's unique sensitivity
to these orders) is perturbing the determination of the scale parameters
for these orders. We have calculated and stored satellite measurement
partial derivatives for the gravity model (nearly) complete to degree
50. When altimetry and surface gravity are introduced into the solution,
STARLETTE's resonance will contribute to the determination of these
m=27, 28, and 29 terms to £=50 and this source of aliasing will be
eliminated.

Two additional calibration tests were made. The first was one in
which the inclusion of a preliminary set of altimetry in the GEM-T1
solution was assessed (and calibrated). The second directly evaluated
the effect of significantly changing the value of the scaling factor,
f, given in (eq. 8.8).

When speculating about the effect of using altimeter data within
the GEM-T!1 solution, we are attempting to project into the future and
assess the accuracy of some yet-to-be-determined solution. A great deal
of work remains to be done on improving our treatment of the altimeter
data to eliminate non-geoidal signal (and it is scheduled for late
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1987). However, the altimeter normal matrix we have obtained is similar
to what will be available in the future, and for statistical purposes,
it should be sufficient. Our first altimeter test model is PGS3163,
whose gravity anomalies are compared to the SEASAT derived gravity
anomalies in Figure 10.3. This model was computed giving very small
weight to the altimeter data, since we did not wish to overwhelm the
well calibrated GEM-T1 solution. However, for the present purposes, a
second model was solved, called PGS3164, in which the altimetry was
given five times the weight it had in PGS3163. The altimeter weight in
PGS3164 more closely reflects the weight given to this data type in our
previously published PGS-S4 solution. The calibration of this model is
shown in Figure 10.10 where the overall scale factor of 1.02 which was
obtained is in good agreement with those for either degree or order
groupings of the coefficients. Shown in Figure 10.11 are the calibrated
uncertainties for the PGS3164 model. The improvement over GEM-T1 is
striking, and indicates that inclusion of the altimeter data in the

future should have a substantial impact on further field improvements.

Finally, a calibration was performed on a field which was delib-
erately corrupted. In the discussion in Section 8.2, we show that a
delicate balance of weights needs to be found to arrive at a good
gravity model accompanied by realistic error covariances. We feel that
this balance has been obtained in GEM-T1. However, looking at eq. (8.8)
one can see that the value selected for f can alter both the overall
scaling of the solution uncertainties and the balance between f and .
A test solution, PGS3013, was made where f was multiplied upwards by a
factor of 5 using a PGS-T2' base model (see Figure 8.4). The resulting
standard deviations from this model, as expected, were about a factor of
2.5 better than those seen for GEM-T1. However, when this model was
tested against surface gravity data, its performance was far worse
(Table 8.2). PGS3013 was then calibrated using the same procedures
which were utilized (as described in this section) for GEM-T1. For this
model, the scaling parameter El was found to be approximately 2.5 When
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the PGS3013 errors are scaled by this factor one obtains the results
shown in Figure 10.12 which reveals a significant degradation of the
PGS-TZIfield. It is encouraging to note that the scaled errors for
PGS3013 are worse than even GEM-L2, as is its performance on all of our

tests using independent surface gravimetry and altimeter data.

In summary, we believe that valid methods for gravity model
calibration have been developed and tested. The results confirm those
which were obtained from comparisons with surface gravity and altimetry
and indicate that a dramatic improvement has been achieved over previous
satellite-only, Goddard Earth Models like GEM-L2. As shown by these
calibrations, the uncertainties given for the GEM-T1 models in Figures
10.1 and 10.2 are realistic and can be applied to TOPEX simulated orbit
testing.

10.3 COMPARISONS BETWEEN GEM-T1 AND GEM-L2

One of the important gains achieved with the complete re-calculation
of a satellite-only gravity model lies in the ability to replace older
data sets with more precise data which previously were unavailable. When
assessing GEM-T1 in this light, we find that all of the laser data from
BE-C, GEOS-1, GEOS-2, SEASAT and STARLETTE were not utilized in GEM-L2.
Nor were the Doppler data from OSCAR and SEASAT previously used. There
is an overlap with regards to the LAGEOS ranging, for GEM-L2 employed
2.5 years of the full-rate observations spanning January 1979 through
June 1981, In GEM-T1, five years of LAGEOS two-minute normal-points
have now been analyzed covering the years 1980 through 1984, Therefore,
there 1is a considerable independent wealth of GEM-T1 information
(approximately 75%) which has not been previously used in earlier GEM
solutions. It is principally the older optical/early laser data sets,
especially those used having low inclination orbits, which are a source

of commonality between recent GEM models and GEM-T1. But even in these
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cases, changes of approximately 25% in data selection have been made
overall. Also of note, GEM-L2 used an additional 14 satellites which
have not yet been included in GEM-T1. Another significant departure
from GEM-L2 is the extension of the "satellite-only" model from 20x20 to
degree 36 as was done in GEM-T1.

In a paper by Lambeck and Coleman (1983) the uncertainties
published for GEM-L2 were directly questioned. It is of interest to
revisit this issue here, and go beyond our direct response to that paper
found in Lerch et al, (1986). There is a high degree of independence
between GEM-T1 and GEM-L2. The models have been developed (a) using
different computer programs, (b) in the presence of different constants,
(¢) with completely different treatment of earth/ocean tides, (d) with a
new set of station positions in a new earth-fixed reference frame, (e)
using a new model for nutations and a new third-body ephemerides
(J2000), (f) with nearly a completely different set of tracking
observations and finally (g) with the extension of the field from degree
20 (in GEM-L2) to degree 36 (in GEM-T1) which more than doubles the size
of the field. We feel that a direct comparison of these recent models
can shed meaningful light on the adequacy of our previous calibration
methods. Figure 10.13 presents a histogram of the percent change in the
individual coefficients (between GEM-T!1 and GEM-L2) as:

AC
P, = %, x 100
C OC
2,m (10.11)
AS
P. = —2™ 4 100
S OS
L,m
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where

AC m and AS are the normalized potential coefficient

differences between the two models,

o » Og are the published coefficient uncertainties
bom - L,m found in Lerch et al, (1985) for the GEM-L2
model and
PC, PS are the percent changes in the coefficients.

It is clear from this figure, that nearly the entire GEM-T1 model is
within one-sigma of GEM-L2.

Figure 10.14 shows the RMS coefficient differences by degree for
both PGS-T2' and GEM-T1 with GEM-L2 again compared to the published
estimate of GEM-L2's errors. (Again, PGS-T2' does not contain the low
inclination satellite data.) Since the GEM-L2 errors are larger than
those of GEM-T1 and PGS-T2', Figure 10.14 uses the GEM-L2 uncertainties
as a basis for comparison. These last two figures show very good
calibrated agreement between these nearly independent models and verify
that our past calibration methods yielded reliable uncertainty estimates
for GEM-LZ2.

10.4 THE NEED FOR LOW INCLINATION DATA-- REVISITED

Section 5.2.8 described some of the analyses which led us to
introduce six more satellite data sets into our earlier PGS-T2 model.
As described therein, the zonal harmonic coefficients in PGS-T2 were
unsatisfactory due to the lack of adequate orbital inclination sampling
in the field. The PGS-T2' model which will be referred to in this

section was a version of the original PGS-T2 corrected for the GEOS-2
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problem described in Section 8.2 (see Figure 8.3). The surprising large
impact of the six low inclination data sets had on the solution (where
GEM-T1 = PGS-T2' + (6 low i data sets)) has already been shown (in terms
of field accuracy) in Figure 10.2. Figure 10.15 directly shows the
improvement the addition of these data had on the =zonal harmonic
recovery. A further assessment of the importance of these 1low

inclination satellite data sets is the subject of this subsection.

A good approach for measuring the influence of the low
inclination data on the GEM-T1 solution is through an evaluation of the
solution "condition numbers" for the harmonics when models with and
without these observations are compared. Here, condition number C; is

defined as:

Ci = Dii o4 (10.12)

where

Dij is the diagonal of the combined normal matrix (CN) given

in equation (8.12), and

94 is the diagonal of the inverse of the CN matrix given in
(8.13)

It can be shown that these condition numbers demonstrate the loss
of significant digits on the solution parameters in the reduction of the
matrix. (Ci = Dii Aii/determinant where Aii is the cofactor for the

element Dii')
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Note that Ci=1, if there is no correlation present (i.e., oij=0
for i=j) and

1 (0) Idealized error variances for
0., = — 0, . the case where there is zero (10.13)
ii D.. ii

il correlation present.

It can be shown that the condition number, Ci’ will increase from
unity depending on the extent of correlation in the inverse matrix (cNy,

and according to (10.12), Uii will increase as

_ (o)
Os5 Ci/Dii = Ci oii (10.14)

Equation (10.14) shows that the size of the condition number
reflects the extent that correlation in the solution causes the variance
to increase over the idealized variance. Hence, if the condition
numbers are significantly reduced in a matrix, then the error variances

are proportionately reduced.

The condition numbers in the comparison below reveal an interest-
ing statistical property about the loss of resolution in the answers,
due to cross-correlations among the parameters. If one takes the con-
dition numbers obtained in a model (like PGS-T2') which lacked the low
inclination data and divides them by the condition numbers obtained in
GEM-T1 (as was done to produce Figure 10.16) the full impact of these
data can be assessed. It is clear that the off-diagonal conditioning
provided by the 1low inclination data penetrated into the central
mid-degree sections of the model allowing a better resolution of the
harmonics extending beyond improving the zonal determination. Obviously,
these low inclination observations played a significant role in the
determination of GEM-T1 which is somewhat surprising, given their level
of observation imprecision and the low weight these data had in the

combined solution.

285



GEM-T1 WITHOUT LOW INCLINATION SATELLITES OVER GEM-T1

DEGREE

RMS

QOQQOﬁOOQQQOOOQQQ

- - e o o s o o

F‘ﬁHHHHHHHHHHv—IHP‘HH
QQOQOOQOQQO\QQOQQQQ

HHHv—h—‘Hr—‘HﬂHQ:—‘H;—iHF‘HH
OO0 O0O0O0OOOOOOORO00O0O

e 5 & 8 s o e e ® e o & o s s e s o o

alalelnlalalalelalala o Lo Poto P o o X
OO00OONOO0OO0OmMOOODOOO0O

e o & o ¢ o o ® s ® ° ° o s o o+ e o o

rtririrdrtrdrtrdrdrirtrd el rl e
OO0 OOOOOOFHFM~MOOO0DO0000

e o & & o o s ® o ® o & » e s s o e s o

e lelialnlelelalalalalalalo o R R R Fo R R o )
OO0 FMMAFHNMHMFHMH~NOO0000

e« o o & o o & & s ®© ® e s & o & o s = o

et e et et et e el e et e
COOOCOHMANNMITITITITMNNONN~~

e » o o & o = o s s s e * o =+ o o+ o

el el el L Lo T R e e e e e R e T Rt
OOQQOQO\Q”NO\W\OGQU\QOOON”’\”

HﬁHHHHQr—IOHQﬁHAHHHﬁQOQOQO
COCOOONMFMMMUITUVNNNMHHMFRNOO~OOO

e ® o ® & o & & @ e e+ 2 ® s & e o & s s s o+ o

e e el lelalelalatiainlalala oo P o P P R g
CO0OOFHFMUNOCMOAOITTN~NO~NOOO000O0

e o ® o ®» & ° & e & 9 o s s e & o s o s > s o+ o

e e Ll lanlalalala iy N el L L T e T R T T e e L L]
CO0OM~NANNMANNNMMAMMNOOOONROOONOO

et et el e el el red rd el e A et et e e A A A A O e A S O
QQOQHF‘NN\"WWNNHQQQOOO\QOO\O\OQOO

« o o o s o e o o o . e« o o o

HHF‘H-M-GF-!HHF‘HF‘HHHF‘HP‘HOHHOOOF‘QH
ocamNNmmwwmmNH.qH—comoomowhcosoamc\

e o o o o o o e o o o .

l-"-!l-il-iHﬁHMHHr—‘P‘ﬁHHF‘F‘F‘Q'—!HQOQHOQOO
QQHHNF’)I‘\I‘\U\U\\T\?NNF‘HQQOO””Q‘Q‘””QOOO\

Fir-h-lp—h—lH-—h—lr-tHF‘F‘F‘F‘MF‘OF‘AAQOOOOQAOHQ
OOFMNINANAOOVONINIIMAN ket r{fONAONNVOONNNOO

vt el rd el rd el ol el et e A A A A A A O OO OO ~NOO0O ™
OHNN\DOO‘W\”WOQ”\T\?N’F‘QQQQO”QQO‘&OO‘O@O

F‘HF‘F‘HN!—'NF‘NF‘NP‘HF‘F‘.F‘ﬁcﬂF‘ocQF‘QoF‘oHQH
ON“I\@MG‘mNﬂ\wf\Hﬁc\fNHr—h—l””OQQI\OO\O\O‘O\OQ\

. . . * o o o e o e o ®

l-h-|HHNNN’NN’NNNNNN-—M—M—‘HHOO-—M—M—IOHOOOQ-—!Q
HO\ONO&NHO\NO\NW\W”N\TWNOQHOO”O\QQO\O\OO\O\Q

HHNN’N’WW@'\?\?@@mmHHI—IH!—lHHHHHQOHQQQQOOF‘
AT HOTMMOONOONINIOMMM~HONRCONRVORNOORN

s ®» o & ® & ® ® & & ® & e ® ° s ° e & ° s s s B 3 s o 2 o+ o s o

HNNN"VH‘\IH\O\O\Ow\f\omWNF‘HHH-CHQOHHQQFCOQOI—COQ
O*F"“OO\\TI\Nm”l\\ONw”a\\ONmmNQF‘NO\ﬁHQO\QQOOQ

NNMU\\?OOInr-n\owwthMMNHAﬁﬁ—cAOHﬁHQAHOQA
i
eoeomcoo~o~ooon-cocomc\mr\haﬁthmonwcmwmm-—aN

\fhwONO\O\\TIﬂlﬂv—!NOI"\F*N”F!\TNN’ON'ONNHHF‘HH—GHHH
MANMNNTOMMNrtrdet -t
- 4

NM\?U\NOI\”O\O-CNM\'? OO
e lalalelnlelalelalsl

C’\O\?mQN-—lwU\Q\OQQ&OW-—IN’G‘N”ONNHAQQOOQQOOO

ﬂmmg;f\;g”gc\fNl\U\MN’NNNHNHHHFOHF‘FH-‘FGF!HI:—!FOHF!

286

17 18 19 20

12 13 14 15 16

11

9 10

8

ORDER
62.5 4.7 3.52.51.81.41.21.11.11,11.11.31.21.01.21.11.01.01.01.01.0

RMS

Ratio of Condition Numbers.

Figure 10.16.




10.5 SUMMARY

This section has described a method for calibrating the errors
found within our GEM-T1 gravity solution. The scaled covariance matrix
obtained for the GEM-T1 solution, we believe, reflects an accurate
estimate of both gravitational and tidal model errors. A good deal of
this effort was made possible by the availability of our vectorized
software which allowed us to make a large number of experimental fields
at nominal cost, and the fact that we have made a "satellite-only" model
which could then be evaluated through the use of altimetry and surface

gravimetry.
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SECTION 11.0
GRAVITY FIELD TESTING ON GEM-T1

11.1 ORBIT TESTING

One of the best ways, and in this project, one of the most
relevant means for assessing the accuracy of the gravity model comes
through tests using orbital tracking data. These tests typically fall
into two categories: (a) orbital information extracted from previous
analyses, such as "lumped harmonics" observed to explain the orbital
evolution of deeply resonant objects, can be used to calibrate portions
of the GEM-T1 field. And (b), the tracking data on various artificial
satellites can readily be used to assess improvements and weaknesses in
the gravity models when RMS of fits to these observations are obtained
and the resulting residuals are analyzed. This second category of
testing also includes fits to precise laser observations, re-calculation
of reference orbits to assess radial errors detected through altimeter
cross-over misclosures, and the use of new and unrepresented satellite
data sets for orbital reductions. All of these'approaches are undertaken

herein.

In the past, Goddard Space Flight Center has had to rely on so-
called "tailored" gravity models to satisfy certain orbital accuracy
requirements. This represented an admission on our part, that errors in
the general models could not be effectively minimized to a satisfactory
level for all considered satellites. Therefore, certain data sets were
given 1inordinately high weights 1in special solutions to provide
satellite-specific minimization of gravity errors. The consequences of
this intentional mis-balancing of the weights within a field were
predictable. Firstly, the objective of having good performance on a
specific satellite orbit was achieved. For example the PGS-1331 model
which was "tailored" for STARLETTE, does indeed perform better on this
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satellite than any of the contemporary more general models. The same is
true for the PGS-S4 model developed for SEASAT. However, this improve-
ment was achieved at a cost, which is found in the aliasing of the
coefficients within these "tailored" solutions--an aliasing which is
considerably higher than that found in the general GEM models. It was
hoped at the inception of this effort, that the good orbital performance
seen with "tailored"” models could be maintained with the development of
an improved, general-purpose gravity solution. As shown 1in this

section, GEM-T1 more than meets these earlier expectations.

Comparisons are made evaluating the performance of GEM-T1 with

both general and "tailored" gravity models in the following subsections.

11.1.1 Orbital Tests on Laser Satellites

The deployment of a worldwide network of laser stations has
dramatically improved the capabilities of satellite geodesy. Special
spacecraft have been designed and launched into near-earth orbit to take
advantage of the unique accuracies provided by these tracking systems.
Third generation lasers have a precision on the order of <5 cm for 1
point per second ranges. These high data rates can be condensed through
the formation of "normal" points at sampled time intervals which, for
most purposes, are nearly noiseless. Systematic errors may exist within
the laser ranges, but colocation testing and prepass and postpass
ranging calibrations limit these errors so that they seldom exceed 5
cm. With mobile instruments occupying globally distributed sites, the
accumulated data from many satellite missions can provide a highly

accurate set of observations for gravity model testing.
Of primary interest are two special laser satellites. LAGEOS and

STARLETTE are unique in several respects. They are passive, dense

spheres covered with retroreflectors, whose sole purposes are to serve
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as space-based laser ranging targets. Both of these satellites, by
careful design, have a 1limited sensitivity to non-conservative force
model effects, and are extremely good satellites for gauging gravity
modeling improvements. The STARLETTE and LAGEOS orbits are, however,
quite different. LAGEOS orbits the earth at nearly an earth's radius
and thereby senses only the longest wavelength portion of the earth's
geopotential due to attenuation. STARLETTE, on the other hand, is in a
somewhat eccentric orbit (e=.02) with a perigee height of slightly more
than 800km. In this orbit, STARLETTE experiences a much richer spectrum
of gravity and tidal perturbations than does LAGEOS, especially those

due to the shorter wavelength terms in the gravity model.

For LAGEOS orbits determined from a month's worth of tracking,
gravity modeling is the dominant source of force model error. The orbit
of LAGEOS is so clearly perturbed by the gravity field and little else,
it is an ideal object for assessing long wavelength geopotential
modeling accuracy. In order to isolate the gravity model error, LAGEOS
monthly arcs require solution for the orbital state, a solar radiation
pressure and along-track acceleration coefficient, as well as solution
for earth orientation parameters. All of these were adjust